Quantum Noise in Mesoscopic Physics pp 119-133

Part of the NATO Science Series book series (NAII, volume 97) | Cite as

Shot Noise in Diffusive Superconductor/Normal Metal Heterostructures

  • Christoph Strunk
  • Christian Schonenberger


According to the scattering theory of quantum transport, the electrons propagate through mesoscopic conductors between large charge reservoirs similar to photons in wave guides. The conductance G is described in terms of transmission modes or transport channels with transmission coefficients Tn The stochastic transmission of electrical charge through the scattering region causes fluctuations of the current, i.e. current noise. This is called shot noise similar to the noise in vacuum tubes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. B. Lesovik, JETP lett. 49, 592 (1989).ADSGoogle Scholar
  2. 2.
    M. Büt tiker, Phys. Rev. Lett. 65, 2901 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    M. Reznikov, M. Heiblum, H. Shtrikman, and D. Mahalu, Phys. Rev. Lett. 75, 3340 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    A. Kumar, L. Saminadayar, D. G. Glattli, Y. Jin, and B. Etienne, Phys. Rev. Lett. 76, 2778 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    O. N. Dorokhov, Solid state Comm. 51 381 (1984).ADSCrossRefGoogle Scholar
  6. 6.
    C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46,1889 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. V. Nazarov, Phys. Rev. Lett. 73, 134 (1994).ADSCrossRefGoogle Scholar
  8. 8.
    E. V. Sukhorukov and D. Loss, Phys. Rev. Lett. 80, 4959 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    E. V. Sukhorukov and D. Loss, Phys. Rev. B 59,13054 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    R. J. Schoelkopf, P. J. Burke, A. A. Kozhevnikov, D. E. Prober, and M. J. Rooks, Phys. Rev. Lett. 78, 3370 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    M. Henny, S. Oberholzer, C. Strunk, and C. Schönenberger, Phys. Rev. B 59, 2871 (1999); M. Henny, H. Birk, R. Huber, C. Strunk, A. Bachtold, M. Krüger, and C. Schönenberger, Appl. Phys. Lett. 71, 773 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    K. E. Nagaev, Phys. Lett. A 169, 103, (1992).ADSCrossRefGoogle Scholar
  13. 13.
    K. E. Nagaev, Phys. Rev. B52, 4740 (1995).ADSGoogle Scholar
  14. 14.
    Here we consider the angle averaged distribution function depending only on energy. This is reasonable, because the diffusive motion makes the angle dependent distribution function nearly isotropic.Google Scholar
  15. 15.
    H. Pothier, S. Gueron, N. O. Birge, D. Esteve, and M. Devoret, Phys. Rev. Lett. 79, 3490 (1997).ADSCrossRefGoogle Scholar
  16. 16.
    V. I. Kozub and A. M. Rudin, Phys. Rev. B 52, 7853 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    A. Steinbach, J. M. Martinis, and M. H. Devoret, Phys. Rev. Lett. 76, 3806 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    R. A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, Europhys. Lett. 27, 255 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    Ya. M. Banter and E. V. Sukhurukov, Phys. Rev. Lett. 84, 1280 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    S. Oberholzer, E. V. Sukhorukov, C. Strunk, and C. Schönenberger, Phys. Rev. Lett. 86, 2114 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    A.A. Andreev, JETP 19,1228 (1964).Google Scholar
  22. 22.
    G. E. Blonder, M. Tinkham, and T. M. Klapwijk, Phys. Rev. B 25, 4515 (1982).ADSCrossRefGoogle Scholar
  23. 23.
    M. J. M. de Jong and C. W. J. Beenakker, Phys. Rev. B 49, 16070 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    X. Jehl, M. Sanquer, R. Calemczuk, and D. Mailly, Nature 405, 50 (2000).ADSCrossRefGoogle Scholar
  25. 25.
    A. A. Kozhevnikov, R. J. Schoelkopf, D. E. Prober, Phys. Rev. Lett., 84, 3398 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    K. E. Nagaev and M. Büttiker, Phys. Rev. B 63, 081301(R) (2001).ADSGoogle Scholar
  27. 27.
    This seems trivial in case of one normal and one superconducting reservoir, but is not the case in presence of two superconductors discussed below.Google Scholar
  28. 28.
    X. Jehl and M. Sanquer, Phys. Rev. B 63, 052511 (2001).ADSCrossRefGoogle Scholar
  29. 29.
    I. O. Kulik, Sov. Phys. JETP, 30, 944 (1973); [Zh. Eksp. Teor. Fiz. 57, 1745 (1969)].ADSGoogle Scholar
  30. 30.
    T. M. Klapwijk, G. E. Blonder, and M. Tinkham, Physica 109&110B,1657 (1982); W. M. van Huffelen et al., Phys. Rev. B 47, 5170 (1993); A. W. Kleinsasser et al., Phys. Rev. Lett. 72, 1738 (1994).Google Scholar
  31. 31.
    A. Chrestin, T. Matsuyama, and U. Merkt, Phys. Rev. B 55, 84578465 (1997).CrossRefGoogle Scholar
  32. 32.
    J. Kutchinsky, R. Taboryski, T. Clausen, C. B. Sørensen, A. Kristensen, P. E. Lindelof, J. Bindslev Hansen, C. Scheide Jacobsen, and J. L. Skov, Phys. Rev. Lett. 78, 931 (1997).ADSCrossRefGoogle Scholar
  33. 33.
    T. Hoss, C. Strunk, T. Nussbaumer, R. Huber, U. Staufer, and C. Schönenberger, Phys. Rev. B, 4079 (2000).Google Scholar
  34. 34.
    F. Pierre, A. Anthore, H. Pothier, C. Urbina, and D. Esteve, Phys. Rev. Lett. 86, 1078 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    K. E. Nagaev, Phys. Rev. Lett. 86, 3112 (2001).ADSCrossRefGoogle Scholar
  36. 36.
    E. V. Bezuglyi, E. N. Bratus, V. S. Shumeiko, and G. Wendin, Phys. Rev. B 63, 100501(R) (2001).ADSCrossRefGoogle Scholar
  37. 37.
    F. Pierre, H. Pothier, D. Esteve, and M. Devoret, J. Low. Temp.Phys. 118, 437 (2000).CrossRefGoogle Scholar
  38. 38.
    For a review, see B. L. Altshuler and A. G. Aronov in Electron-Electron Interactions in disordered systems, Edts. A. I. Efros and M. Pollak, Elsevier Science Publishers B. V. (1985).Google Scholar
  39. 39.
    A. Kaminski and L. I. Glazman, Phys. Rev. Lett. 86, 2400 (2001).ADSCrossRefGoogle Scholar
  40. 40.
    J. M. Ziman, Principles of the theory of solids, Cambridge University Press, Cambrigde (1979).Google Scholar
  41. 41.
    A. B. Gougam, F. Pierre, H. Pothier, D. Esteve, and N. O. Birge, J. Low. Temp.Phys. 118, 447 (2000).CrossRefGoogle Scholar
  42. 42.
    C. Hoffmann, F. Lefloch, and M. Sanquer, cond-mat/0209310.Google Scholar
  43. 43.
    H. Courtois et ai., Phys. Rev. Lett. 76, 130 (1996).ADSCrossRefGoogle Scholar
  44. 44.
    Y. Naveh and D. V. Averin, Phys. Rev. Lett. 82, 4090 (1999).ADSCrossRefGoogle Scholar
  45. 45.
    A. Dimoulas, J. P. Heida, B. J. v. Wees, T. M. Klapwijk, W. v. d. Graaf, and G. Borghs, Phys. Rev. Lett. 74, 602 (1995).ADSCrossRefGoogle Scholar
  46. 46.
    P. Charlat, H. Courtois, Ph. Gandit, D. Mailly, A. F. Volkov, and B. Pannetier, Phys. Rev. Lett. 77, 4950 (1996).ADSCrossRefGoogle Scholar
  47. 47.
    B. Reulet, A. A. Kozhevnikov, D. E. Prober, W. Belzig, Yu. V. Nazarov, cond-mat/0208089.Google Scholar
  48. 48.
    C. M. Falco, W. H. Parker, S. E. Trullinger, and P. K. Hansma, Phys. Rev. B 10, 1865 (1974); R. H. Koch, D. J. Van Harlingen, and J. Clarke, Phys. Rev. B 26, 74 (1982).ADSCrossRefGoogle Scholar
  49. 49.
    E. Scheer, P. Joyez, D. Esteve, C. Urbina, and M.H. Devoret, Phys. Rev. Lett. 78, 3535 (1997).ADSCrossRefGoogle Scholar
  50. 50.
    D. Averin and H. Imam, Phys. Rev. Lett. 76, 3814 (1996).ADSCrossRefGoogle Scholar
  51. 51.
    J. C. Cuevas, A. Martín-Rodero, and A. Levy-Yeyati, Phys. Rev. Lett. 82, 4086 (1999).ADSCrossRefGoogle Scholar
  52. 52.
    R. Cron, M. F. Goffman, D. Esteve, and C. Urbina, Phys. Rev. Lett. 86, 4104 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Christoph Strunk
    • 1
  • Christian Schonenberger
    • 2
  1. 1.Institute of Experimental and Applied PhysicsUniversity of RegensburgRegensburgGermany
  2. 2.Institute of PhysicsUniversity of BaselBaselSwitzerland

Personalised recommendations