Skip to main content

Applications of ESR Spectroscopy to Inorganic-Clay Systems

  • Conference paper
Advanced Chemical Methods for Soil and Clay Minerals Research

Part of the book series: NATO Advanced Study Institutes Series ((ASIC,volume 63))

Abstract

The surface chemistry and physical properties of clay minerals are often very much dependent on the nature of the metal ions which balance the negative charge of the oxygen framework. The most abundant metal ions normally found in clays (silicon, aluminum, magnesium, and alkali and alkaline earth metals) are diamagnetic, but paramagnetic ions such as Fe3+ may also be found to substitute for silicon, aluminum or magnesium in tetrahedral or octahedral positions. A variety of paramagnetic ions or metal complexes, such as VO2+ or Cu(phen) 2+2 , can become part of a clay structure by replacing the interlayer alkali or alkaline earth exchange cations. Thus, it is only natural that electron spin resonance spectroscopy (ESR), sometimes called electron paramagnetic resonance (EPR), should be a useful tool in studying the behavior of metal ions in clays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abragam, A. and B. Bleany. 1970. Electron paramagnetic resonance of transition metal ions. Oxford University Press, London. 911 pp.

    Google Scholar 

  2. Adrian, F.J. 1968. Guidelines for interpreting electron spin resonance spectra of paramagnetic species absorbed on surfaces. J. Colloid Interface Sei. 26: 317–354.

    Article  CAS  Google Scholar 

  3. Allen, B.T. and D.W. Nebert. 1964. Hyperfine structure in the EPR spectrum of the manganous ion in frozen solutions. J. Chem. Phys. 41: 1983–1985.

    Article  CAS  Google Scholar 

  4. Angel, B.R., K. Richards, and J.P.E. Jones. 1976. The synthesis, morphology, and general properties of kaolinites specifically doped with metallic ions, and defects generated by irradiation. In S.W. Bailey, ed., Proc. Inter. Clay Conf., Mexico City. Applied Publishing Ltd., Wilmette, IL. pp. 297–304.

    Google Scholar 

  5. Berkheiser, V. and M.M. Mortland. 1975. Variability in exchange ion position in smectite: dependence on interlayer solvent. Clays Clay Miner. 23: 404–410.

    Article  CAS  Google Scholar 

  6. Berkheiser, V. and M.M. Mortland. 1977. Hectorite complexes with Cu(II) and Fe(II)-1,10-Phenanthroline chelates. Clays Clay Miner. 25: 105–112.

    Article  CAS  Google Scholar 

  7. Besson, G., H. Estrade, L. Gatineau, C. Tchoubar, and J. Mering. 1975. A kinetic survey of the cation exchange and of the oxidation of a vermiculite. Clays Clay Miner. 23: 318–322.

    Article  CAS  Google Scholar 

  8. Brindley, G.W. and G. Ertem. 1971. Preparation and solvation properties of some variable charge montmorillonites. Clays Clay Miner. 19: 399–404.

    Article  CAS  Google Scholar 

  9. Burlamacchi, L. 1971. Motional correlation time in the electron spin relaxation of 6 S spin state ions in solution. J. Chem. Phys. 55: 1205–1212.

    Article  CAS  Google Scholar 

  10. Burlamacchi, L., G. Martini, and E. Tiezzi. 1970. Solvent and ligand dependence of electron spin relaxation of Manganese(II) in solution. J. Phys. Chem. 74: 3980–3987.

    Article  CAS  Google Scholar 

  11. Burlamacchi, L., G. Martini, and M. Romanelli. 1973. Electron spin relaxation and hyperfine line shape of manganese(II) in mixed-solvent systems. J. Chem. Phys. 59: 3008–3014.

    Article  CAS  Google Scholar 

  12. Cambell, R.F. and M.W. Hanna. 1976. The vanadyl ion as an electron paramagnetic resonance probe of micelle-liquid crystal systems. J Phys. Chem. 80: 1892–1898.

    Article  Google Scholar 

  13. Chasteen, N.D. and M.W. Hanna. 1972. Electron paramagnetic resonance line widths of vanadyl(IV) a-hydroxycarboxylates. J. Phys. Chem. 76: 3951–3958.

    Article  CAS  Google Scholar 

  14. Clementz, D.M., T.J. Pinnavaia, and M.M. Mortland. 1973. Stereochemistry of hydrated copper(ll) ions on the intermellar surfaces of layer silicates. An electron spin resonance study. J. Phys. Chem. 77: 196–200.

    Article  CAS  Google Scholar 

  15. Clementz, D.M., M.M. Mortland, and T.J. Pinnavaia. 1974. Properties of reduced charge montmorillonites: hydrated Cu(ll) ions as a spectroscopic probe. Clays Clay Miner. 22: 49–57.

    Article  CAS  Google Scholar 

  16. Garrett, B.B. and L.O. Morgan. 1966. Electron spin relaxation in solvated manganese(ll) ion solutions. J. Chem. Phys. 44: 890–897.

    Article  CAS  Google Scholar 

  17. Hinckley, C.C. and L.O. Morgan. 1966. Electron spin resonance linewidths of manganese(ll) ions in concentrated aqueous solutions. J. Chem. Phys. 44: 898.

    Article  CAS  Google Scholar 

  18. Hudson, A. 1966. The effects of dynamic exchange on the electron resonance line shapes of octahedral copper complexes. Mot. Phys. 10: 575–581.

    Article  CAS  Google Scholar 

  19. Jones, J.P.E., B.R. Angel, and P.L. Hall. 1974. Electron spin resonance studies of doped synthetic kaolinite II. Clay Miner. 10: 257–270.

    Article  CAS  Google Scholar 

  20. Luckhurst, G.R. and G.F. Pedulli. 1971. Research notes electron spin relaxation in solutions of manganese(II) ions. Mol. Phys. 22: 931.

    Article  CAS  Google Scholar 

  21. McBride, M.B. 1976. Origin and position of exchange sites in kaolinite: an ESR study. Clays Clay Miner. 24: 88–92.

    Article  CAS  Google Scholar 

  22. McBride, M.B. 1979. Mobility and reactions of VO2* on hydrated smectite surfaces. Clays Clay Miner. 27: 91–96.

    Article  CAS  Google Scholar 

  23. McBride, M.B. and M.M. Mortland. 1974. Copper(II) interactions with montmorillonite: evidence from physical methods. Soil Sci. Soc. Am. Proc. 38: 408–415.

    Article  CAS  Google Scholar 

  24. McBride, M.B., T.J. Pinnavaia, and M.M. Mortland. 1975a. Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces. J. Phys. Chem. 79: 2430–2435.

    Article  CAS  Google Scholar 

  25. McBride, M.B..T.J. Pinnavaia, and M.M. Mortland. 1975b. Electron spin relaxation and the mobility of manganese(ll) exchange ions in smectites. Am. Mineral. 60: 66–72.

    CAS  Google Scholar 

  26. McBride, M.B., T.J. Pinnavaia, and M.M. Mortland. 1975c. Perturbation of structural Fe3+ in smectites by exchange ions. Clays Clay Miner. 23: 103–107.

    Article  CAS  Google Scholar 

  27. McBride, M.B., T.J. Pinnavaia and M.M. Mortland. 1975d. Exchange ion posi tions in smectite: effects on electron spin resonance of structural iron. Clays Clay Miner. 23: 162–163.

    Article  CAS  Google Scholar 

  28. McGarvey, B.R. 1966. Electron spin resonance of transition-metal complexes. In R.L. Carlin, ed. Transition metal chemistry. Vol. 3. Marcel Dekker, Inc., New York. pp. 89–201.

    Google Scholar 

  29. McGarvey, B.R. 1969. Charge transfer in the metal-ligand bond as determined by electron spin resonance. In T.F. Yen, ed. Electron spin resonance of metal complexes. Plenum Publishing Corp., New York.

    Google Scholar 

  30. Meads, R.E. and P.J. Maiden. 1975. Electron spin resonance in natural kaolinites containing Fe3+ and other transition metal ions. Clay Miner. 10: 313–345.

    Article  CAS  Google Scholar 

  31. Mehra, O.P. and M.L. Jackson. 1960. Iron oxide removal from soils and clays by a dithionite citrate system buffered with sodium bicarbonate. Clays Clay Miner. 7: 317–327.

    Article  Google Scholar 

  32. Olivier, D., J.C. Vedrine, and H. Pezerat. 1975. Resonance paramagnetique électronique du Fe3+ dans les argiles altérés artificiellement et dans le milieu naturel. In S.W. Bailey, éd., Proc. Inter. Clay Conf., Mexico City. Allied Publishing Ltd., Wilmette, IL. pp. 231–238.

    Google Scholar 

  33. Pinnavaia, T.J., P.L. Hall, S.S. Cady, and M.M. Mortland. 1974. Aromatic radical cation formation on the intracrystal surfaces of transition metal layer lattice silicates. J. Phys. Chem. 78: 994–999.

    Article  CAS  Google Scholar 

  34. Ravina, I. and P.F. Low. 1977. Change of b-dimension with swelling of montmorillonite. Clays Clay Miner. 25: 201–204.

    Article  CAS  Google Scholar 

  35. Rubinstein, M., A. Baram, and Z. Lug. 1971. Electronic and nuclear relaxation in solutions of transition metal ions with spin = 3/2 and 5/2. Mol. Phys. 20: 67.

    Article  CAS  Google Scholar 

  36. Schoonheydt, R.A. 1978. Analysis of the electron paramagnetic resonance spectra of Bis (ethylenediamine) copper(ll) on the surfaces of zeolites X and Y and of a Camp Berteau montmorillonite. J. Phys. Chem. 82: 497–498.

    Article  CAS  Google Scholar 

  37. Swartz, J.C., B.M. Hoffman, R.J. Krizek, and D.K. Atmatzidis. 1979. A general procedure for simulating EPR spectra of partially oriented paramagnetic centers. J. Mag. Res. 36: 259–268.

    CAS  Google Scholar 

  38. Velghe, F., R.A. Schoonheydt, J.B. Uytterhoeven, P. Peigneus, and J.H. Lunsford. 1977. Spectroscopic characterization and thermal stability of copper(11) ethylenediamine complexes on solid surfaces. 2. Montmorillonite. J. Phys. Chem. 81: 1187–1194.

    Article  CAS  Google Scholar 

  39. Wertz, J.E. and J.R. Bolton. 1972. Electron spin resonance: elementary theory and practical applications. McGraw-Hill, New York. Chaps. 11, 12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 D. Reidel Publishing Company

About this paper

Cite this paper

Pinnavaia, T.J. (1980). Applications of ESR Spectroscopy to Inorganic-Clay Systems. In: Stucki, J.W., Banwart, W.L. (eds) Advanced Chemical Methods for Soil and Clay Minerals Research. NATO Advanced Study Institutes Series, vol 63. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-9094-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-9094-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-9096-8

  • Online ISBN: 978-94-009-9094-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics