Advertisement

Endorphins and Pain

  • L. Terenius

Abstract

Pain is the behavioural response to external or internal noxious stimuli. Clinical pain is very different from experimental pain and it is proposed that pain forms a hierarchy starting with activation of sensory fibres or internal clues and terminating with processing in the CNS at various levels. It is the affective component of pain which is influenced by morphine, and not the sensory thresholds. Endorphins should be expected to have an action similar to morphine, and experimental evidence is in keeping with this contention.

Three different areas relating to endorphins and pain are reviewed. Firstly, evidence is given that endorphins may be responsible for adaptation to pain, either congenital or acquired, as well as to diurnal changes in pain sensitivity. It is possible, in fact, that endorphins have a more general role in sensory adaptation. Secondly, some evidence suggests that endorphins are released in acute trauma and may play a protective role, for instance in parturition. Finally, endorphins seem to be involved in chronic pain. Patients with chronic neurogenic pain frequently show low levels of endorphins in their cerebrospinal fluid. These low levels may be raised by acupuncture with pain relief as a result. The relief of pain is reversed by the narcotic antagonist naloxone. These observations converge on one point, that endorphins play an important modulatory role and inadequate endorphin activity leads to pathologic changes.

Keywords

Chronic Pain Opioid Receptor Pain Threshold Trigeminal Neuralgia Pain Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almay, B. G. L., Johansson, F., von Knorring, L., Sedvall, G. and Terenius, L. (1980). Relationships between CSF levels of endorphins and monoamine metabolites in chronic pain patients.Psychopharmacology, 67, 139PubMedCrossRefGoogle Scholar
  2. Almay. B. G. L.. Johansson. F.. von Knorring. L.. Terenius. L. and Wahlstrom. A. (1978). Endorphins in chronic pain. I. Differences in CSF endorphin levels between organic and psychogenic pain syndromes. Pain. 5. 153CrossRefGoogle Scholar
  3. Bloom, F., Battenberg, E., Rossier, J.. Ling, N. and Guillemin, R. (1978). Neurons containing β-endorphin in rat brain exist separately from those containing enkephalin: Immunocyto-chemical studies. Proc. Natl. Acad. Sci. (Wash.). 75. 1591CrossRefGoogle Scholar
  4. Bonica, J. J. (1979). Paper presented at the International Symposium on Pain. June 11–15. SorrentoGoogle Scholar
  5. Davis, G. C., Buchsbaum, M. S. and Bunney, W. E.. Jr. (1978). Naloxone decreases diurnal variation in pain sensitivity and somatosensory evoked potentials. Life Sci.. 23. 1449PubMedCrossRefGoogle Scholar
  6. Frederickson, R. C. A., Burgis, V. and Edwards, J. D. (1977). Hyperalgesia induced by naloxone follows diurnal rhythm in responsivity to painful stimuli. Science. 198. 756PubMedCrossRefGoogle Scholar
  7. Glynn, C. J., Lloyd, J. W., and Folkard, S., (1976). The diurnal variation in perception of pain. Proc. R. Soc. Med., 69. 369PubMedGoogle Scholar
  8. Hertz, A., Albus, L., Metys, J., Schubert, P. and Teschemacher, H. (1970). On the central sites for the antinociceptive action of morphine and fentanyl. Neuropharmacology. 9. 539CrossRefGoogle Scholar
  9. Hetta, J. and Terenius, L. (1980). Prenatal naloxone affects survival and morphine sensitivity of rat offspring. Neurosci. Lett., 16, 323PubMedCrossRefGoogle Scholar
  10. Hökfelt, T., Ljungdahl, Å., Terenius, L. Elde, R. and Nilsson, G. (1977). Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and substance P. Proc. Natl. Acad. Sci. (Wash.). 74. 3081CrossRefGoogle Scholar
  11. Jaffé, J. H. (1975). Drug addiction and drug abuse. In L. S. Goodman and A. Gilman (eds). The Pharmacological Basis of Therapeutics, pp. 284–324. (London: Macmillan)Google Scholar
  12. Johansson, F.. Almay, B. G. L., von Knorring, L., Terenius, L. and Aström, M. (1979). Personality traits in chronic pain patients related to endorphin levels of CSF. Psychiatr. Res., 1,231CrossRefGoogle Scholar
  13. von Knorring, L., Almay, B. G. L., Johansson, F. and Terenius, L. (1979). Endorphins in CSF of chronic pain patients in relation to augmenting-reducing response in visual averaged evoked response. Neuropsychobiology, 5, 322CrossRefGoogle Scholar
  14. von Knorring, L.. Almay, B. G. L.. Johansson, F. and Terenius, L. (1978). Pain perception and endorphin levels in cerebrospinal fluid. Pain. 5. 359CrossRefGoogle Scholar
  15. Lassen, N. A., Ingvar, D. H. and Skinhøj, E. (1978). Brain function and blood flow. Sci. Am., 239. 50CrossRefGoogle Scholar
  16. Levine, J. D., Gordon, N. C., Bornstein, J. E. and Fields, H. L. (1979). The role of pain in placebo analgesia. Proc. Natl. Acad. Sci. (Wash.), 76, 3528CrossRefGoogle Scholar
  17. Levine, J. D., Gordon, N. C. and Fields, H. L. (1978a). The mechanism of placebo analgesia. Lancet , 2. 654PubMedCrossRefGoogle Scholar
  18. Levine, J. D., Gordon, N. C., Jones, R. T. and Fields, H. L. (1978b). The narcotic antagonist naloxone enhances clinical pain. Nature . 272. 826PubMedCrossRefGoogle Scholar
  19. Liebeskind, J. C. and Paul, L. A. (1977). Psychological and physiological mechanisms of pain. Ann. Rev. Psychol., 28, 41CrossRefGoogle Scholar
  20. Lombard, M. C., Nashold, B. S. and Albe-Fessard, D. (1979). Deafferentation hypersensitivity in the rat after dorsal rhizotomy: A possible animal model of chronic pain. Pain. 6. 163PubMedCrossRefGoogle Scholar
  21. Melzack, R. (1973). The Puzzle of Pain. (New York: Basic Books)Google Scholar
  22. Rogers, E. J. and Vilkin. B. (1978). Diurnal variation in sensory and pain thresholds correlated with mood states. J. Clin. Psychiatry , 39, 431PubMedGoogle Scholar
  23. Sjölund, B. H. and Eriksson, M. B. E. (1979). The influence of naloxone on analgesia produced by peripheral conditioning stimulation. Brain Res.. 173. 295PubMedCrossRefGoogle Scholar
  24. Sjölund, B., Terenius, L. and Eriksson, M. (1977). Increased cerebrospinal fluid levels of endorphins after electro-acupuncture. Acta Physiol. Scand.. 100. 382PubMedCrossRefGoogle Scholar
  25. Snyder, S. H. and Simantov, R. (1977). The opiate receptor and opioid peptides. J. Neurochem.. 28, 13PubMedCrossRefGoogle Scholar
  26. Terenius, L. (1978). Endogenous peptides and analgesia. Ann. Rev. Pharmacol. Toxicol.. 18. 189CrossRefGoogle Scholar
  27. Terenius, L. and Wahlström, A. (1975). Morphine-like ligand for opiate receptors in human CSF. Life Sci., 16, 1759CrossRefGoogle Scholar
  28. Thrush, D. C. (1973). Autonomic dysfunction in four patients with congenital insensitivity to pain. Brain , 96, 591PubMedCrossRefGoogle Scholar
  29. Tsou, K. and Jang, C. S. (1964). Studies on the site of analgesic action of morphine by intracerebral microinjection. Sci. Sinica. 8. 1099Google Scholar
  30. Wall, P. D. (1979). On the relation of injury to pain. Pain. 6. 253PubMedCrossRefGoogle Scholar
  31. Watson, S. J. and Akil, H. (1980). On the multiplicity of active substances in single neurons: β-endorphin and α-melanocyte stimulating hormone as a model system. In D. de Wied and P. A. van Keep (eds.). Hormones and the Brain. (Lancaster: MTP Press)Google Scholar
  32. Yaksh, T. L. and Rudy, T. A. (1976). Analgesia mediated by a direct spinal action of narcotics. Science . 192, 1357PubMedCrossRefGoogle Scholar

Copyright information

© MTP Press Limited 1980

Authors and Affiliations

  • L. Terenius
    • 1
  1. 1.Institutionen För Farmakologi, Biomedicinska CentrumUppsala UniversitetsUppsalaSweden

Personalised recommendations