The role of bladders for salt removal in some Chenopodiaceae (mainly Atriplex species)

  • Ute Schirmer
  • Siegmar-W. Breckle
Part of the Tasks for vegetation science book series (TAVS, volume 2)


Though there are numerous articles on halophytes there is still no conformity what a halophyte really is and how the difference to glycophytes may best be defined. According to Schimper (1935) halophytes are plants which complete their whole life cycle in saline habitats; usually there, soils are characterized by high NaCl levels and low osmotic potentials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Adriani, M.J. 1958. Halophyten. In Hdb. der Pflanzenphysiologie, Bd. 4, ed. Adriani, M.J, pp 709–736, Berlin.Google Scholar
  2. Albert, R. 1980/1981. Halophyten. Habilitationsarbeit, Wien.Google Scholar
  3. Atkinson, M.R., Findlay, G.P., Hope, A.B., Pitman, M.G., Saddler, H.D.M. and West, K.R. 1967. Salt regulation in the mangroves Rhizophora mueronata Lam. and Aegialitis annulata R. Br. Aust. J. Biol. Sci. 20: 589–599.Google Scholar
  4. Baumeister, W. and Kloos, G. 1974. Über die Salzsekretion bei Halimione portulacoides. Flora 163: 24–56.Google Scholar
  5. Baxter, R.F. and Gibson, N.E. 1954. The glycerol dehydrogenases of Pseudomonas salinasia, Vibrio costicolus, and E. coli in relation to bacterial halophilism. Can. J. Biochem. Physiol. 32: 206–217.PubMedCrossRefGoogle Scholar
  6. Beadle, N.C.W. 1981. The Vegetation of Australia. In Vegetationsmonographien der einzelnen Großräume, Bd. 4, eds. H. Walter and S.-W. Breckle. Fisher, Stuttgart.Google Scholar
  7. Berger-Landefeldt, U. 1959. Beiträge zur Ökologie der Pflanzen nordafrikanischer Salzpfannen. Vegetatio 2: 1–48.Google Scholar
  8. Berry, W.L. 1970. Characteristics of salts secreted by Tamarix aphylla. Amer. J. Bot. 57: 1226–1230.CrossRefGoogle Scholar
  9. Berry, W.L. and Thompson, W.W. 1967. Composition of salt secreted by salt glands of Tamarix aphylla. Can. J. Bot. 45: 1774–1775.CrossRefGoogle Scholar
  10. Black, R.F. 1954. The leaf anatomy of Australian members of the genus Atriplex. I. Atriplex vesicaria Heward and A. nummularia Lindl. Aust. J. Bot. 2: 269–286.CrossRefGoogle Scholar
  11. Black, R.F. 1958. Effect of sodium chloride on leaf succulence and area of Atriplex hastata L. Aust. J. Bot. 6: 306–321.CrossRefGoogle Scholar
  12. Breckle, S.-W. 1974. Wasser- und Salzverhältnisse bei Halophyten der Salzsteppe in Utah, USA. Ber. Dtsch. Bot. Ges. 87: 589–600.Google Scholar
  13. Breckle, S.-W. 1975. Ionengehalte halophiler Pflanzen Spaniens. Decheniana (Bonn) 127: 221–228.Google Scholar
  14. Breckle, S.-W. 1976. Zur Ökologie und zu den Mineralstoffverhältnissen absalzender und nicht absalzender Xero-Halo- phyten. Dissertationes Botanicae Bd. 35.Google Scholar
  15. Breckle, S.-W. 1978. Salinity as an ecological factor promoting desertification. Manuscript of paper presented at the post- plenary session of the Xth Intern. Congress on Anthropological and Ethnological Sciences, A Symposium on ‘Anthropology and Desertification’ in Jodhpur, India, Dec. 1978.Google Scholar
  16. Breckle, S.-W. 1981. Cool deserts and shrub semideserts in Afghanistan and Iran. In Ecosystems of the world, Vol. 5: Shrub steppe and cold desert, ed. N. West, in press. Elsevier, Amsterdam.Google Scholar
  17. Caldwell, M.M. 1974. Physiology of desert halophytes. In Ecology of Halophytes, eds. R.J. Reimold, and W.H. Queen, pp. 355–377. Acad. Press, New York.Google Scholar
  18. Chapman, V.J. 1974. Salt marshes and salt deserts of the world. In Ecology of Halophytes, eds. R.J. Reimold and W.H. Queen, pp. 3–32. Academic Press, London.Google Scholar
  19. Chatterton, N.J., McKell, C.M., Bingham, F.F. and Clawson, W.J. 1970. Absorption of Na, CI, and B by desert saltbush in relation to composition of nutrient solution culture. Agron. J. 62: 351–352.CrossRefGoogle Scholar
  20. Collander, R. 1941. Selective absorption of cations by plants. Plant Physiol. 16: 691–720.PubMedCrossRefGoogle Scholar
  21. Frey-Wissling, A. 1935. Die Stoffausscheidung der Höheren Pflanzen. Springer, Berlin.Google Scholar
  22. Goodman, P.J. 1973. Physiological and ecotypic adaptations of plants to salt desert conditions in Utah. J. Ecol. 61: 473–94.CrossRefGoogle Scholar
  23. Goodman, P.J. and Caldwell, M.M. 1971. Shrub ecotypes in a salt desert. Nature 232: 571–572.PubMedCrossRefGoogle Scholar
  24. Greenway, H. 1968. Growth stimulation by high chloride concentration in halophytes. Israel J. Bot. 17: 169–177.Google Scholar
  25. Greenway, H. and Osmond, C.D. 1970. Ion relations, growth and metabolism of Atriplex at high external electrolyte concentrations. In The Biology of Atriplex, ed. R. Jones, pp. 49–56. CSIRO, Deniliquin.Google Scholar
  26. Hall, H.M. and Clements, F.E. 1923. The phylogenetic method of Taxonomy: The North-American species of Artemisia, Chrysothamnus and Atriplex. Publ. Carnegie Inst. No. 326.Google Scholar
  27. Hayward, H.E. 1956. Plant growth under saline conditions. UNESCO, Arid Zone Research, Utilization of Saline Water 4: 37–71.Google Scholar
  28. Hedenström, H.V. and Breckle, S.-W. 1974. Obligate halophytes? A test with tissue culture methods. Z. Pjlanzenphysiol. 74: 183–185.Google Scholar
  29. Henkel, P.A. and Shakhov, A.A. 1945. The ecological significance of the water regime of certain halophytes (Russian). Bot. Jh. 30: 154–166.Google Scholar
  30. Hill, A.E. 1967. Ion and water transport in Limonium. II. Shoot circuit analysis. Biochem. Biophys. Acta 135: 461–465.PubMedCrossRefGoogle Scholar
  31. Hoffmann, A. 1980. Der Einfluß winterlichen Streusalzes auf die Vegetation am Autobahnrand. Staatsexamensarbeit, Univ. Bonn.Google Scholar
  32. Jennings, D.H. 1968. Halophytes, succulence and sodium in plants — a unified theory. New Phytol. 67: 899–911.CrossRefGoogle Scholar
  33. Kappen, L. and Maier, M. 1973. Bedeutung einiger nichtflüchtiger Carbonsäuren für die Frostresistenz des Halophyten Halimione portulaeoides unter dem Einfluß verschieden hoher Kochsalzbelastung. Oecologia 12: 241–250.Google Scholar
  34. Kelley, D.B., Goodin, J.R. and Miller, D.R. 1982. Biology of Atriplex. In Contributions to the Ecology of Halophytes, eds. D.N. Sen and K.S. Rajpurohit, pp. 79–107. Dr W. Junk Publ., The Hague.Google Scholar
  35. Larcher, W. 1980. Ökologie der Pflanzen auf physiologischer Grundlage, 3. Aufl. Ulmer, Stuttgart.Google Scholar
  36. Levitt, J. 1956. The hardiness of plants. Acad. Press, New York.Google Scholar
  37. Liphschitz, N. and Waisel, Y. 1982. Adaptation of plants to sahne environments: salt excretion and glandular structure. In Contributions to the Ecology of Halophytes, eds. D.N. Sen and K.S. Rajpurohit, pp. 197–214. Dr W. Junk Publ., The Hague.Google Scholar
  38. Lötschert, W. 1970. Keimung, Transpiration, Wasser- und Ionenaufnahme bei Glykophyten und Halophyten. Oecol. Plant. 5: 287–300.Google Scholar
  39. Lüttge, U. 1971. Structure and function of salt glands. Ann. Rev. Plant Physiol. 22: 23–44.CrossRefGoogle Scholar
  40. Mirazai, N.A. and Breckle, S.-W. 1978. Untersuchungen an afghanischen Halophyten. I. Salzverhaltnisse in Chenopo- diaceen Nord-Afghanistans. Bot. Jahrb. System. 99: 565–578.Google Scholar
  41. Moore, R.T., Breckle, S.-W. and Caldwell, M.M. 1972. Mineral ion composition and osmotic relations of Atriplex conjertijolia and Eurotia lanata. Oecologia 11: 67–78.CrossRefGoogle Scholar
  42. Mozafar, A. 1969. Physiology of salt tolerance in Atriplex halimus L.: Ion uptake and distribution, oxalic acid content, and catalase activity. Doct. Diss., Univ. Calif. Riverside.Google Scholar
  43. Mozafar, A. 1970. Vesiculated hairs: a mechanism for salt tolerance in Atriplex halimus L. Plant Physiol. 45: 62–65.CrossRefGoogle Scholar
  44. Osmond, C.B., Troughton, J.H. and Goodchild, D.J. 1969. Physiological, biochemical and structural studies of photosynthesis and photorespiration in two species of Atriplex. Z. Pjlanzenphysiol. 61: 218–237.Google Scholar
  45. Osmond, C.B., Bjorkman, O. and Anderson. D.J. 1980. Physiological Processes in Plant Ecology; towards a synthesis with Atriplex. Ecol. Studies No. 36. Springer, Berlin.Google Scholar
  46. Pallaghy, C.K. 1970. Salt relations in Atriplex leaves. In The Biology of Atriplex, ed. R. Jones, pp. 57–62. CSIRO, Deniliquin.Google Scholar
  47. Pearcy, R.W. 1976. Temperature effects on growth and C02 exchange in coastal and desert races of Atriplex lentijormis. Oecologia 26: 245–255.CrossRefGoogle Scholar
  48. Pearcy, R.W., Berry, J.A. and Fork, D.C. 1977. Effects of growth temperature on the thermal stability of the photo- synthetic apparatus of Atriplex lentijormis (Torr.) Wats. Plant Physiol. 59: 873–878.PubMedCrossRefGoogle Scholar
  49. Rajpurohit, K.S. 1980. Soil salinity and its role on phyto- geography of western Rajasthan. Ph.D. Thesis Univ. Jodhpur.Google Scholar
  50. Rees, W.J. and Sidrak, C.H. 1956. Plant nutrition on fly ash. Plant and Soil 8: 141–159.CrossRefGoogle Scholar
  51. Repp, G. 1961. The salt tolerance of plants; basic research and tests. UNESCO, Arid Zone Res. 14: 153–161.Google Scholar
  52. Roberts, E.C. 1950. Chemical effects of salt-tolerant shrubs on soils. 4th Int. Congr. Soil Sci. Amsterdam, I: 404–406.Google Scholar
  53. Schimper, A.F.W. 1935. Pjlanzengeographie auf physiologischer Grundlage, 3. Aufl. Fischer Verlag, Jena.Google Scholar
  54. Schirmer, U. 1980. Blasenhaare und halophiles Verhalten bei Atriplex hortensis L. Diplomarbeit, Universität Bonn.Google Scholar
  55. Sharma, M.L. and Tongway, D.J. 1973. Plant induced soil salinity patterns in two saltbush (Atriplex spp.) communities. J. Range Managern. 26: 121–125.Google Scholar
  56. Smaoui, A. 1971. Différenciation des trichomes chez Atriplex halimus. L. C.R. Acad. Sci., sér. D 273: 1268–1271.Google Scholar
  57. Stocker, O. 1928. Das Halophytenproblem. Ergeb. Biol. 3: 265–353.Google Scholar
  58. Strogonov, B.P. 1975. Salt tolerance and salt metabolism of plants. Cumulative index of literature, published in Russian in 1875–1975. USSR Academy of Science, Moscow.Google Scholar
  59. Thompson, W.W. 1975. The structure and function of salt glands. In Plants in saline environments, eds. A. Poljakoff Mayber and J. Gale, pp. 118–146, Springer, Berlin.Google Scholar
  60. Troughton, J.H. and Card, K.A. 1974. Leaf anatomy of Atriplex buchananii. New Zealand J. of Bot. 12: 167–177.Google Scholar
  61. Ungar, I.A. 1982. Germination ecology of halophytes. In Contributions to the Ecology of Halophytes, eds. D.N. Sen and K.S. Rajpurohit, pp. 143–154. Dr W. Junk Publ., The Hague.Google Scholar
  62. Waisel, Y. 1961. Ecological studies on Tamarix aphylla (L.) Karst. III. The salt economy — Plant and soil 13: 356–364.CrossRefGoogle Scholar
  63. Waisel, Y. 1972. Biology of Halophytes. Acad. Press, New York.Google Scholar
  64. Walsh, G.W. 1974. Mangroves: a review. In Ecology of Halophytes, eds. R.J. Reimold and W.H. Queen, pp. 51–174. Academic Press, New York.Google Scholar
  65. West, K.R. 1970. The anatomy of Atriplex leaves. In The Biology of Atriplex, ed. R. Jones, pp. 11–15. CSIRO, Deniliquin.Google Scholar
  66. Wood, J.G. 1923. On transpiration in the field of some plants from the arid portions of South Australia, with notes on their physiological anatomy. Trans. R. Soc. S. Aust. (Adelaide) 47: 259–278.Google Scholar
  67. Ziegler, H. and Lüttge, U. 1966. Die Salzdrüsen von Limonium vulgare L. I. Die Feinstruktur. Planta 70: 193–206.CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, The Hague, The Netherlands 1982

Authors and Affiliations

  • Ute Schirmer
    • 1
  • Siegmar-W. Breckle
    • 1
  1. 1.Department of EcologyUniversity of BielefeldBielefeldGermany

Personalised recommendations