Heat, Cold and Geometry
Chapter
Abstract
Classical and relativistic mechanics can be formulated in terms of symplectic geometry; this formulation leads to a rigorous statement of the principles of statistical mechanics and of thermodynamics.
Keywords
Symplectic Manifold World Line Gibbs State Invariant Subgroup Entropy Current
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- (1).P. Casal: Principes variationnels en fluide compressible et en magnétodynamique des fluides. Journ. de Mécanique, 5, 2 (1966), pp. 149.zbMATHGoogle Scholar
- (2).B. Carter: Perfect fluid and magnetic field conservation laws in the theory of black holes accretion rings. DAF. Observatoire de Paris, Meudon (France).Google Scholar
- (3).B. Carter: Regular and anomalous heat conduction. Journ. relativistes 1976, Universite Libre de Bruxelles.Google Scholar
- (4).A. Einstein: The meaning of relativity. Methuen, London (1922).zbMATHCrossRefGoogle Scholar
- (5).H. Ertel: Meteoro 1. Ztschr., 59 (1942), pp. 277–385.Google Scholar
- (6).H.L. Gavriline, MM. Zaslavskii: Dauk. Ak. Nauk SSSR, 192 1 (1970), pp. 48.Google Scholar
- (7).P. Iglesias: Essai de thermodynamique rationnelle des milieux continus, Ann. de l’Institut H. Poincaré, vol. XXXIV. A paraître.Google Scholar
- (8).W. Israel: Non-stationary irreversible thermodynamics: a causal relativistic theory, OAP. 444, Caltech (1976).Google Scholar
- (9).W. Israel: Extract from “General relativity”, papers in honour of J.L. Synge, Clarendon Press, Oxford (1972).Google Scholar
- (10).W. Israel: The dynamics of polarisation, General relativity and gravitation, vol. 9, 5, (1978).MathSciNetCrossRefGoogle Scholar
- (11).W. Israel, J.M. Stewart: Thermodynamics of non-stationary and Transient effects in relativistic gas. Phys. Lett. 58 4, (1976).Google Scholar
- (12).W. Israel, J.M. Stewart: Transient relativistic thermodynamics and kinetic theory. Ann. of Phys., 118, 2(1979).MathSciNetCrossRefGoogle Scholar
- (13).A.I. Khinchin: Mathematical foundations of statistical mechanics. Dover, New York (1949).zbMATHGoogle Scholar
- (14).L. Landau, E. Lifchitz: Statistical physics. Addison-Wesley (1969). Fluid Mechanics. Addison-Wesley (1958).Google Scholar
- (15).A. Lichnerowicz: Théories relativistes de la gravitation et de 1’électromagnétisme. Masson, Paris (1955).Google Scholar
- (16).J.J. Moreau: Loi de l’élasticité en grande déformation. Séminaire d’Analyse convexe. Montpellier (1979).Google Scholar
- (17).Noll: The foundation of mechanics and thermodynamics. Springer (1979).Google Scholar
- (18).Sedov: Mécanique des milieux continus. Editions de Moscou.Google Scholar
- (19).J.M. Souriau: Definition covariante des équilibres thermodynamiques. Supp. Nuovo Cimento, 1, I.4. (1966), pp. 203–216.MathSciNetGoogle Scholar
- (20).J.M. Souriau: Structure des systèmes dynamiques. Dunod. Paris (1969).Google Scholar
- (21).J.M. Souriau: Modele de particule à spin dans le champ électromagnétique et gravitationnel. Ann. Inst. H. Poincaré. XX. 4 (1974), p. 315–364.MathSciNetGoogle Scholar
- (22).J.M. Souriau: Thermodynamique relativiste des fluides. Rend. Sem. Mat., Univers. Politechn. Torino, 35 (1976–1977), p. 21–34.MathSciNetGoogle Scholar
- (23).J.M. Souriau: Structure of dynamical systems. North-Holland. Amsterdam (à paraître).Google Scholar
- (24).J.M. Souriau: Géométrie et relativité. Hermann (1964).zbMATHGoogle Scholar
- (25).J.L. Synge: The relativistic gas. Amsterdam (1957).zbMATHGoogle Scholar
- (26).C. Vallée: Thermodynamique relativiste des milieux continus. Institut de Mécanique des fluides. Poitiers. A paraître.Google Scholar
- (27).G.N. Watson: A treatise of the theory of Bessel functions (1944).zbMATHGoogle Scholar
Copyright information
© D. Reidel Publishing Company 1983