Advertisement

Heat, Cold and Geometry

  • P. Iglesias
  • J. M. Souriau
Part of the Mathematical Physics Studies book series (MPST, volume 3)

Abstract

Classical and relativistic mechanics can be formulated in terms of symplectic geometry; this formulation leads to a rigorous statement of the principles of statistical mechanics and of thermodynamics.

Keywords

Symplectic Manifold World Line Gibbs State Invariant Subgroup Entropy Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    P. Casal: Principes variationnels en fluide compressible et en magnétodynamique des fluides. Journ. de Mécanique, 5, 2 (1966), pp. 149.zbMATHGoogle Scholar
  2. (2).
    B. Carter: Perfect fluid and magnetic field conservation laws in the theory of black holes accretion rings. DAF. Observatoire de Paris, Meudon (France).Google Scholar
  3. (3).
    B. Carter: Regular and anomalous heat conduction. Journ. relativistes 1976, Universite Libre de Bruxelles.Google Scholar
  4. (4).
    A. Einstein: The meaning of relativity. Methuen, London (1922).zbMATHCrossRefGoogle Scholar
  5. (5).
    H. Ertel: Meteoro 1. Ztschr., 59 (1942), pp. 277–385.Google Scholar
  6. (6).
    H.L. Gavriline, MM. Zaslavskii: Dauk. Ak. Nauk SSSR, 192 1 (1970), pp. 48.Google Scholar
  7. (7).
    P. Iglesias: Essai de thermodynamique rationnelle des milieux continus, Ann. de l’Institut H. Poincaré, vol. XXXIV. A paraître.Google Scholar
  8. (8).
    W. Israel: Non-stationary irreversible thermodynamics: a causal relativistic theory, OAP. 444, Caltech (1976).Google Scholar
  9. (9).
    W. Israel: Extract from “General relativity”, papers in honour of J.L. Synge, Clarendon Press, Oxford (1972).Google Scholar
  10. (10).
    W. Israel: The dynamics of polarisation, General relativity and gravitation, vol. 9, 5, (1978).MathSciNetCrossRefGoogle Scholar
  11. (11).
    W. Israel, J.M. Stewart: Thermodynamics of non-stationary and Transient effects in relativistic gas. Phys. Lett. 58 4, (1976).Google Scholar
  12. (12).
    W. Israel, J.M. Stewart: Transient relativistic thermodynamics and kinetic theory. Ann. of Phys., 118, 2(1979).MathSciNetCrossRefGoogle Scholar
  13. (13).
    A.I. Khinchin: Mathematical foundations of statistical mechanics. Dover, New York (1949).zbMATHGoogle Scholar
  14. (14).
    L. Landau, E. Lifchitz: Statistical physics. Addison-Wesley (1969). Fluid Mechanics. Addison-Wesley (1958).Google Scholar
  15. (15).
    A. Lichnerowicz: Théories relativistes de la gravitation et de 1’électromagnétisme. Masson, Paris (1955).Google Scholar
  16. (16).
    J.J. Moreau: Loi de l’élasticité en grande déformation. Séminaire d’Analyse convexe. Montpellier (1979).Google Scholar
  17. (17).
    Noll: The foundation of mechanics and thermodynamics. Springer (1979).Google Scholar
  18. (18).
    Sedov: Mécanique des milieux continus. Editions de Moscou.Google Scholar
  19. (19).
    J.M. Souriau: Definition covariante des équilibres thermodynamiques. Supp. Nuovo Cimento, 1, I.4. (1966), pp. 203–216.MathSciNetGoogle Scholar
  20. (20).
    J.M. Souriau: Structure des systèmes dynamiques. Dunod. Paris (1969).Google Scholar
  21. (21).
    J.M. Souriau: Modele de particule à spin dans le champ électromagnétique et gravitationnel. Ann. Inst. H. Poincaré. XX. 4 (1974), p. 315–364.MathSciNetGoogle Scholar
  22. (22).
    J.M. Souriau: Thermodynamique relativiste des fluides. Rend. Sem. Mat., Univers. Politechn. Torino, 35 (1976–1977), p. 21–34.MathSciNetGoogle Scholar
  23. (23).
    J.M. Souriau: Structure of dynamical systems. North-Holland. Amsterdam (à paraître).Google Scholar
  24. (24).
    J.M. Souriau: Géométrie et relativité. Hermann (1964).zbMATHGoogle Scholar
  25. (25).
    J.L. Synge: The relativistic gas. Amsterdam (1957).zbMATHGoogle Scholar
  26. (26).
    C. Vallée: Thermodynamique relativiste des milieux continus. Institut de Mécanique des fluides. Poitiers. A paraître.Google Scholar
  27. (27).
    G.N. Watson: A treatise of the theory of Bessel functions (1944).zbMATHGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • P. Iglesias
    • 1
  • J. M. Souriau
    • 1
    • 2
  1. 1.CNRS.MarseilleFrance
  2. 2.Université de ProvenceMarseilleFrance

Personalised recommendations