Advertisement

Biochemical Considerations in the Design of Radiopharmaceuticals

  • David R. Elmaleh
  • E. Livni
  • S. Levy
Part of the NATO ASI Series book series (NSSE, volume 61)

Abstract

The goal of radiopharmaceutical chemistry is to design and develop radiotracers targeted to an organ or function whose activity kinetics in tissue can be detected externally by a gamma or a positron device. Three years ago, Eckelman and Reba (1) divided radiopharmaceuticals into the general categories of specific and non-specific agents. The specific radiopharmaceuticals are the tracers that follow a biochemical pathway or are involved in a particular interaction, for example metabolic substrates, drugs or analogs, and antibodies, Non-specific radiopharmaceuticals include radiolabeled liposomes, cells, microspheres, perfusion agents, inert gases, ethers, alcohols or thallium-201. The design and development of both types of radiopharmaceuticals are important. In the case of myocardial imaging agents, a perfusion agent that will enable differentiation of various stages of ischemia and infarction is as essential as a specific tracer that will reflect metabolism since both perfusion and metabolic functions change with injury.

Keywords

Cerebral Blood Flow Structure Activity Relationship Brain Uptake Oxygen Utilization Label Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eckelman, W.C. and R.C. Reba. “The classification of radiotracers.” J. Nucl. Med. 19 (1978) 1179-1181.Google Scholar
  2. 2.
    Wolf, A.P. and CS. Redvanly. “Carbon-11 and radiopharmaceuticals.” Int. J. Appl. Radiat. Isotopes 28 (1977) 29-48.CrossRefGoogle Scholar
  3. 3.
    Wolf, A.P., D.R. Christman, J.S. Fowler and R.M. Lambrecht. “Synthesis of radiopharmaceuticals and labelled compounds using short-lived isotopes.” In Radiopharmaceuticals and Labeled Compounds, vol. I (Vienna: IAEA, 345-379, 1973).Google Scholar
  4. 4.
    Welch, M.J., J.O. Eichling, M.G. Straatmann, M.E. Raichle and H.M. Ter-Pogossian. “New short-lived radiopharmaceuticals for CNS studies.” In H.J. DeBlanc, Jr. and J.A. Sorensen, eds., Noninvasive Brain Imaging: Computed Tomography and Radionuclides (New York: Society of Nuclear Medicine, 1975).Google Scholar
  5. 5.
    Welch, M.J. and S.J. Wagner. “Preparation of positron-emitting radiopharmaceuticals.” In J.H. Lawrence and T.F. Budinger, eds., Recent Advances in Nuclear Medicine, vol. 5 (New York: Grune and Stratton, 1978).Google Scholar
  6. 6.
    Robinson, G.D., Jr. “Prospect for 18F radiopharmaceuticals.” In G. Subramanian, B.A. Rhodes, J.F. Cooper, V.J. Sodd, eds., Radiopharmaceuticals (New York: Society of Nuclear Medicine, 1975).Google Scholar
  7. 7.
    Palmer, A.J., J.C. Clark and R.W. Goulding. “The preparation of F-18 labelled radiopharmaceuticals.” Int. J. Appl. Radiât. Isotopes 28 (1977) 53-65.CrossRefGoogle Scholar
  8. 8.
    Straatmann, M.G. “A look at 13N and 15O in radiopharmaceuticals Int. J. Appl. Radiât. Isotopes 28 (1977) 13-20.CrossRefGoogle Scholar
  9. 9.
    Wolf, A.P. and J.S. Fowler. “Organic Radiopharmaceuticals: Recent Advances.” In Radiopharmaceuticals II: Proceedings 2nd International Symposium on Radiopharmaceuticals, March 19-22, 1979.Google Scholar
  10. 10.
    Elmaleh, D.R., M. Zalutsky, D. Comar, M.M. Goodman and G.L. Brownell, “C-11 and F-18 amino acids.” In R.P. Spencer, ed., Radiopharmaceuticals, Structure Activity Relationships (New York: Grune and Stratton, 1981).Google Scholar
  11. 11.
    Fowler, S.J. “Organic Radiopharmaceuticals Recent Advances.” In Advances in Emission Tomography, ICG Conference, October 24-26, 1979.Google Scholar
  12. 12.
    Subramaniam, R., N.M. Alpert, B. Hoop, Jr., G.L. Brownell and J.M. Taveras. “A model for regional cerebral oxygen distribution during continuous inhalation of 15O2, C15O and C15O2.” J. Nucl. Med. 19 (1978) 48-53.Google Scholar
  13. 13.
    Ackerman, R.H., J.A. Correia, N.M. Alpert, J.C. Baron, A. Gouliamos, J.C. Grotta, G.L. Brownell and J.M. Taveras. “Positron imaging in ischemic stroke disease using compounds labeled with oxygen-15. Initial results of clinicophysiologic correlations.” Arch. Neurol. 38 (1981) 537-543.PubMedGoogle Scholar
  14. 14.
    Ackerman, R.H., N.M. Alpert, J.A. Correia. “Importance of monitoring metabolic function in assessing the severity of a stroke insult (CBF: an Epiphenomenom?).” Cereb. Blood Flow Metab. 1, suppl. 1 (1981) 502.Google Scholar
  15. 15.
    Ackerman, R.H., S.M. Davis, J.A. Correia. “Positron imaging of CBF and metabolism in patients with cerebral neo-plasma.” J. Cereb. Blood Flow Metab. 1, suppl. 1 (1981) 575.Google Scholar
  16. 16.
    Baron, J.C, M.G. Bousser, D. Comar. “Crosses cerebellar diachisis: A remote functional depression secondary to supratentorial infarction of man.” J. Cereb. Blood Flow Metab. 1, suppl. 1 (1981) 500.Google Scholar
  17. 17.
    Frackowiak, R.S.J., C. Pozzilli, N.J. Legg. “A prospective study of regional cerebral blood flow and oxygen utilization in dementia using positron tomography and oxygen-15.” J. Cereb. Blood Flow Metab. 1, suppl. 1 (1981) 453.Google Scholar
  18. 18.
    Lenzi, G.L., R.S.J. Frackowiak and T. Jones. “Regional cerebral blood flow (CBF), oxygen utilization (CMRO2), and oxygen extraction ratio (OER) in acute hemispheric stroke. J. Cereb. Blood Flow Metab. 1, suppl. 1 (1981) 504.Google Scholar
  19. 19.
    Gelbard, A.S. “13N-labeled Amino Acids,” in R.P. Spencer, ed., Radiopharmaceuticals, Structure Activity Relationships (New York: Grune and Stratton, 1981).Google Scholar
  20. 20.
    Bustany, P., T. Sargent, J.M. Sandubray, J.F. Henry and D. Comar. “Regional human brain uptake and protein incorporation of 11C-L-methionine studies in vivo with PET.” J. Cereb. Blood Flow Metab. 1, suppl. 1 (1981) 1-9, S-17.Google Scholar
  21. 21.
    Washburn, L.C, B. Wieland, T.T. Sun, R.L. Hayes and T.A. Butler, “[1-11C]DL-Valine, a potential pancreas-imaging agent.” J. Nucl. Med. 19 (1978) 77-83.PubMedGoogle Scholar
  22. 22.
    Washburn, L.C, T.T. Sun, B.L. Byrd, R.L. Hayes and T.A. Butler. “D,L-(carboxyl-11C)tryptophan, a potential agent for pancreatic imaging: Production and preclinical investigations. J. Nucl. Med. 20 (1979) 857-864.PubMedGoogle Scholar
  23. 23.
    Syrota, A., D. Comar, M. Cerf, D. Plummer, M. Maziere and C. Kellershohn. “[11C]methionine pancreatic scanning with positron emission computed tomography.” J. Nucl. Med. 20, (1979) 778-781.PubMedGoogle Scholar
  24. 24.
    Kirchner, P.T., J. Ryan, M. Zalutsky and P.V. Harper. “Positron emission tomography for the evaluation of pancreatic disease.” Semin. Nucl. Med. 10, (1980) 374-391.PubMedCrossRefGoogle Scholar
  25. 25.
    McDonald, J.M., A.S. Gelbard, L.P. Clarke, T.R. Christie and J.S. Laughlin. “Imaging of tumors involving bone with 13N-glutamic acid.” Radiology 120 (1976) 623-626.PubMedGoogle Scholar
  26. 26.
    Gelbard, A.S., R.S. Benua, J.S. Laughlin, G. Rosen, R.E. Reiman and J.H. McDonald. “Quantitative scanning of osteogenic sarcoma with nitrogen-13-labeled L-glutamate.” J. Nucl. Med. 20, (1979) 782-784.PubMedGoogle Scholar
  27. 27.
    Rosen, G., A.S. Gelbard, R.S. Benua, J.S. Laughlin, R.E. Reiman and J.H. McDpnald. “13N-glutamate scanning to detect the early response of primary bone tumors to chemotherapy.” Proc. Am. Assoc. Cancer Res. 20 (1979) 189.Google Scholar
  28. 28.
    Henze, E., J. Egbert, J. Barrio, F. Baumgartner, M. Phelps, D. Kuhl, H. Schelbert. “Myocardial energy metabolism evaluated by single pass uptake and positron emission computed tomography of N-13 and C-11 labeled amino acids.” J. Nucl. Med. 22 (1981) p. 10.Google Scholar
  29. 29.
    Comar, D., - Cyclotron progress report. Service Hospitalier Frederic Joliet Department de Biologie, 1978.Google Scholar
  30. 30.
    Soussaline, F., A.E. Todd-Pokropek, D. Plummer, D. Comar, C. Loch, S. Houle and C. Kellershohn. “The physical performances of a single slice positron tomographic system and preliminary results in a clinical environment.” Eur. J. Nucl. Med. 4 (1979) 237-249.PubMedCrossRefGoogle Scholar
  31. 31.
    Garnett, E.S., G. Firnau, C. Nahmias. “Blood brain barrier transport and cerebral utilization of dopa in living monkeys.” Am. J. Physiol. (1980) R318-R327.Google Scholar
  32. 32.
    Korf, J., S. Reiffers, H.D. Beerling-Van Der Molen, J.P.W.F. Lakke, A.M.J. Paans, W. Vaalburg and M.G. Woldring. “Rapid decarboxylation of carbon-11 labeled DL-DOPA in the brain: A potential approach for external detection of nervous structures.” Brain Res. 145 (1978) 59-67.PubMedCrossRefGoogle Scholar
  33. 33.
    Fitzpatrick, T.B. “Mammalian melanin biosynthesis.” Transactions St. John’s Hospital Dermatol. Soc. 51 (1965) 1-26.Google Scholar
  34. 34.
    Van Langevelde, A., H.D. Beerling-Van Der Molen, J.G. Journee-de Korver, A.M.J. Paans and W. Vaalburg. “C-11 labeled melanin precursors as radiopharmaceuticals for the detection of eye melanoma.” J. Nucl. Med. 22 (1981).Google Scholar
  35. 35.
    Meier, D.A., W.H. Beierwaltes and R.E. Counsell. “Radio- activity from labeled precursors of melanin in mice and hamsters with melanoma.” Cancer Res. 27 (1967) 1354-1359.PubMedGoogle Scholar
  36. 36.
    Wick, M.M. and E. Frei III. “Selective incorporation of L-3,4-dihydroxyphenylanine by S-91 Cloudman melanoma in vitro.” Cancer Res. 37 (1977) 2123-2125.PubMedGoogle Scholar
  37. 37.
    Hubner, K.F., G.A. Andrews, L. Washburn, B.W. Wieland, W.D. Gibbs, R.L. Hayes. T.A. Butler and J.D. Winebrenner. “Tumor location with 1-aminocyclopentane (11C) carboxylic acid: Preliminary clinical trials with single-photon detection. J. Nucl. Med. 18 (1977) 1215-1221.PubMedGoogle Scholar
  38. 38.
    Washburn, L.C, T.T. Sun. B.L. Byrd, R.L. Hayes and T.A. Butler. “1-aminocyclobutane[11C] carboxylic acid, A potential tumor-seeking agent. J. Nucl. Med. (1979) 1055-1061.Google Scholar
  39. 39.
    Schmall, B. and R.E. Bigler, “Radiolabeled Drugs: Use of positron-emitting radionuclides.” In R.P. Spencer, ed., Radiopharmaceuticals, Structure Activity Relationships (New York: Grune and Stratton, 1981).Google Scholar
  40. 40.
    Hawkins, R.A., A.L. Miller, J.E. Cremer and R.L. Veech. “Measurement of the rate of glucose utilization by rat brain in vivo.” J. Neurochem. 23 (1974) 917-923.PubMedCrossRefGoogle Scholar
  41. 41.
    Raichle, M.E., K.B. Larson, M.E. Phelps, R.L. Grubb, Jr., M.J. Welch and M.M. Ter-Pogossian. “In vivo measurement of brain glucose transport and metabolism employing glucose-11C.” Am. J. Physiol. 228 (1975) 1936-1948.PubMedGoogle Scholar
  42. 42.
    Raichle, M.E., M. Welch, R.L. Grubb, Jr., C.S. Higgins, M.M. Ter-Pogossian and K.B. Larson. “Measurement of regional substrate utilization rates by emission tomography.” Science 199 (1978) 986-987.PubMedCrossRefGoogle Scholar
  43. 43.
    Sokoloff, L., M. Reivich, C. Kennedy, M.H. DesRosiers, C.S. Patlak, K.D. Pettigrew, O. Sakurada and M. Shinohara. “The (14C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat.” J. Neurochem. 28 (1977) 897-916.PubMedCrossRefGoogle Scholar
  44. 44.
    Gallagher, B.M., J.S. Fowler, N.I. Gutterson, R.R. MacGregor, C.N. Wan and A.P. Wolf. “Metabolic trapping as a principle of radiopharmaceutical design: Some factors responsible for the distribution of [18F]2-deoxy-2-fluoro-D-glucose.” J. Nucl. Med. 19 (1978) 1154-1161.PubMedGoogle Scholar
  45. 45.
    Fowler, J., A.P. Wolf, D.R. Christman. Private communication.Google Scholar
  46. 46.
    Kassis, A.I., S.J. Adelstein, J.S. Fowler and A.P. Wolf. “Uptake and radiotoxicity of F-18-2-fluoro-2-deoxyglucose in mammalian cells.” J. Nucl. Med. 22 (1981) p. 45.Google Scholar
  47. 47.
    Phelps, M.E., S.C. Huang, E.J. Hoffman, C. Selin, L. Sokoloff and D.E. Kuhl. “Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method.” Ann. Neurol. 6 (1979) 371-388.PubMedCrossRefGoogle Scholar
  48. 48.
    Kuhl, D.E., M.E. Phelps, A.P. Kowell, E.S. Metter, C. Selin and J. Winter. “Effects of stroke on local cerebral metabolism and perfusion: Mapping by emission computed tomography of 18FDG and 13NH3.” Ann. Neurol. 8 (1980) 47-60.PubMedCrossRefGoogle Scholar
  49. 49.
    Kuhl, D.E., J. Engel, Jr., M.E. Phelps and C. Selin. “Epileptic patterns of local cerebral metabolism and perfusion in humans determined by emission computed tomography of 18FDG and 13NH3.” Ann. Neurol. 8 (1981) 455.Google Scholar
  50. 50.
    Widen, L., M. Bergstron and G. Blomquist. “Glucose metabolism in patients with schizophrenia: Emission computed tomography measurements with 11-C-glucose.” J. Cereb. Blood Flow Metab. 1, suppl. 1 (1981) 455.Google Scholar
  51. 51.
    Kuhl, D., M. Phelps, C. Markham. “Local cerebral glucose metabolism in Huntington’s disease determined by emission computed tomography of 18F-fluorodeoxyglucose.” J Cereb Blood Flow Metab. 1, suppl. 1 (1981) 459.Google Scholar
  52. 52.
    Greenberg, J.H., M. Reivich, A. Alavi, P. Hand, A. Rosenquist, W. Rintelmann, A. Stein, R. Tusa, R. Dann, D. Christman, J. Fowler, B. MacGregor, A. Wolf. “Metabolic mapping of functional activity in human subjects with the [18F]-fluoro-deoxyglucose technique.” Science 212 (1981) 503-516.CrossRefGoogle Scholar
  53. 53.
    Mazziotta, J.A., M.E. Phelps, J. Miller and D.E. Kuhl. “Tomographic mapping of human cerebral metabolism: Normal unstimulated state.” Neurology 31 (1981) 503-516.Google Scholar
  54. 54.
    Phelps, M.E., J.C. Mazziotta, D.E. Kuhl, M. Nuwer, J. Packwood, J. Metter and J. Engel, Jr. “Tomographic mapping of human cerebral metabolism: Visual stimulation and deprivation.” Neurology 31 (1981) 517-529.PubMedGoogle Scholar
  55. 55.
    Phelps, M.E., J.C. Mazziotta, J. Engel, Jr. “Metabolic response of the brain to visual and auditory stimulation and deprivation.” J. Cereb. Blood Flow Metab. 1, suppl. 1 (1981) 467.Google Scholar
  56. 56.
    Tewson, T.J., M.J. Welch, M.E. Raichle. “[18F]-labeled 3-deoxy-3-fluoro-D-glucose: Synthesis and preliminary bio-distribution data.” J. Nucl. Med. 19 (1978) 1339-1345.PubMedGoogle Scholar
  57. 57.
    Goodman, M.M., D.R. Elmaleh, K.J. Kearfott, R.H. Ackerman, B. Hoop, Jr., G.L. Brownell, N.M. Alpert and W.H. Strauss. “F-18 labeled 3-deoxy-3-fluoro-D-glucose for the study of regional metabolism in brain and heart.” J. Nucl. Med. 22 (1981) 138-144.PubMedGoogle Scholar
  58. 58.
    Elmaleh, D.R., K.J. Kearfott, M.M. Goodman. “A comparison of 18F-sugar analogs.” In V. Nanto and E.M. Soulinna, eds., Animals in Medical Application of Cyclotrons, vol II (Turku Yliopisto, 1981).Google Scholar
  59. 59.
    Goldstein, R.A., M.S. Klein, H.J. Welch and B.E. Sobel. “External assessment of myocardial metabolism with 11C-palmitate in vivo.” J. Nucl. Med. 21 (1980) 342-348.PubMedGoogle Scholar
  60. 60.
    Ter-Pogossian, M.M., M.S. Klein, J. Markham. “Regional assessment of myocardial metabolic integrity in vivo by PET with 11C-palmitate.” Circulation 61 (1980).Google Scholar
  61. 61.
    Feinendegen, L.E., K. Vyskak, C.H.R. Freundlieb, A. Hock, H.J. Machulla, G. Kloster and G. Stocklin. “Noninvasive analysis of metabolic reactions in body tissues, the case of myocardial fatty acids.” Eur. J. Nucl. Med. 6 (1981) 191-200.PubMedCrossRefGoogle Scholar
  62. 62.
    Van der Wall, E.E., W. den Hollander, G.A.K. Heidendal, G. Westera, P.A. Majid and J.P. Roos. “Dynamic myocardial scintigraphy with 123-I-labeled free fatty acids in patients with myocardial infarction. Eur. J. Nucl. Med. 6 (1981) 383-389.PubMedGoogle Scholar
  63. 63.
    Otto, C.A., L.E. Brown, D.M. Wieland and W.H. Beierwaltes. “Radioiodinated fatty acids for myocardial imaging: Effects of chain length.” J. Nucl. Med. 22 (1981) 613-618.PubMedGoogle Scholar
  64. 64.
    Knapp, F.F., Jr. “Selenium and tellurium as Carbon Substituents.” In R.P. Spencer, eds., Radiopharmaceuticals, Structure Activity Relationships (New York: Grune and Stratton, 1981).Google Scholar
  65. 65.
    Livni, E., D.R. Elmaleh, S. Levy, et al: “[1-C-11]-β-methylheptadecanoic acid: A new approach for assessing myocardial metabolism with positron tomography technique. J. Nucl. Med. in press.Google Scholar
  66. 66.
    Kloster, C., E. Roder, H.J. Machulla. “Synthesis, chromatography and tissue distribution of methyl-11C-morphine and methyl-11C-heroin.” J. Labelled Comp. Radiopharm. 16 (1979) 441-448.CrossRefGoogle Scholar
  67. 67.
    Maziere, M., G. Berger. J.M. Godot, C. Prenant and D. Comar. “Etorphine H-C-: A new tool for “in vivo” study of brain opiates receptors.” J. Labelled Comp. Radiopharm. 18 (1981) 291-295.Google Scholar
  68. 68.
    Tewson. T.J., M.E. Raichle and M.J. Welch. “Preliminary studies with [18F]-haloperidol: A radioligand for in vivo studies of the dopamine receptors. Brain Res. 192 (1980) 291-295.PubMedCrossRefGoogle Scholar
  69. 69.
    Maeda, M., T.J. Tewson and M.J. Welch. “Synthesis of high specific activity 18F-spiroperidol for dopamine receptor studies. J. Labelled Comp. and Radiopharm. 18 (1981) 102-103.Google Scholar
  70. 70.
    Arnett, CD., A.M. Findley, A.P. Wolf, J.S. Fowler and R.R. MacGregor. “Specific receptor labeling in vivo with C-11 spiroperidol.” J. Nucl. Med. 22 (1981) p.13.Google Scholar
  71. 71.
    Friedman, A.M., CC Huang, H. Kulmala, R. Dinerstein, R. SO, M. Simonovic and N.Y. Mettzer. “(77Br bromo-spiro-peridol as a dopamine receptor marker.” J. Labelled Comp, and Radiopharm. 18 (1981) 104.Google Scholar
  72. 72.
    Menini, Ch., G. Arfel and R. Naquet. “Visualization of 11C-flunitrazepam displacement in the brain of the live baboon.” Nature (Lond), 280 (1979) 329-331.CrossRefGoogle Scholar
  73. 73.
    Maziere, M., C Cepeda, G. Berger, J.M. Godot, B. Guibert, J. Sastre, M. Crouzel, R. Naquet and D. Comar. “11-C-Muscarinic antagonist (MQNB) visualizes heart “In Vivo” by positron emission tomography. J. Nucl. Med. 22 (1981) p. 77.Google Scholar
  74. 74.
    Katzenellenbogen, J.A., K.E. Carlson, D.F. Heiman and J.E. Hoyd. “Receptor binding as a basis for radiopharmaceutical design.” in R.P. Spencer, ed., Radiopharmaceuticals, Structure Activity Relationships, (New York: Grune and Stratton, 1981).Google Scholar
  75. 75.
    Eckelman, W.C., R.C Reba, R.E. Gibson, W.J. Rzeszotarsei, F. Vieras, J.K. Mazaitis, B. Francis. “Receptor-binding radiotracers: A class of potential radiopharmaceuticals.” J. Nucl. Med. 20 (1979) 350-357.PubMedGoogle Scholar
  76. 76.
    Kung, H., M. Blau. “Regional intracellular pH shift: A proposed new mechanism for radiopharmaceutical uptake in brain and other tissues.” J. Nucl. Med. 21 (1980) 147-153.PubMedGoogle Scholar
  77. 77.
    Young, D. and W. Wolf. “QLAR of 5-Fluorouracil,” in R.P. Spencer, ed., Radiopharmaceuticals, Structure Activity Relationships (New York: Grune and Stratton, 1981).Google Scholar
  78. 78.
    Packer, S., C. Redvanly, R.M. Lambrecht, A.P. Wolf and H.L. Atrins. “Quinoline analog labeled with iodine-123 in melanoma detection. Arch. Opthalmol. 93, (1975) 504-508.Google Scholar
  79. 79.
    Bockslaff, H., E. Jahns and H. Hundenshagen - “Keonena Szintigraphie mit einm doppellochinterakularet tumoren.” Radioabe. Isot. Klinik. Forgch 13 (1978) 341-349.Google Scholar
  80. 80.
    Packer, S., R.G. Fairchild, P.K. Watts, D. Greenberg and S.J. Hannon. “Melanin binding radiopharmaceuticals.” In R.P. Spencer, ed., Radiopharmaceuticals, Structure Activity Relationships (New York: Grune and Stratton, 1981).Google Scholar
  81. 81.
    Weiland, D.M. and W.H. Beierwaltes: A structure-distribution relationship study of adrenomedullary radiopharmaceuticals in R.P. Spencer, eds., Radiopharmaceuticals, Structure Activity Relationships (New York: Grune and Stratton, 1981).Google Scholar
  82. 82.
    Gross, M., M. Frager, T. Volk, R. Kline, J. Sisson, D. Swanson, D. Wieland, N. Thompson, M. Tokes and W. Beierwaltes. “Localization of pheochromocytomas with I-131-M-iodobenzyl-guanidine (I-131-MIBG).” J. Nucl. Med. 22 (1981) p.5.Google Scholar
  83. 83.
    Wieland, D.M., L.E. Brown, D.D. Marsh, T.J. Mangner and W.H. Beierwaltes. “The mechanism of m-IBG localization: Drug intervention studies.” J. Nucl. Med. 22 (1981) p. 20.Google Scholar
  84. 84.
    Wieland, D.M., L.E. Brown, W.L. Rogers, K.C. Worthington, I-L. Wu, N.H. Clinthorne, C.A. Otto, D.P. Swanson and W.H. Beierwaltes. “Myocardial imaging with a radioiodinated norepinephrine storage analog.” J. Nucl. Med. 22 (1981) 22-31.PubMedGoogle Scholar
  85. 85.
    Winchell, H.S., R.M. Baldwin and T.H. Lin - “Development of I-123-labeled amines for brain studies: Localization of I-123 iodophenylalkyl amines in rat brain. J. Nucl. Med. 21 (1980) 940.PubMedGoogle Scholar
  86. 86.
    Winchell, H.S., W.D. Horst, L. Braun, W.H. Oldendorf, R. Hattner and H. Parker. “N-isopropyl-[123I]-p-iodoamphetamine: single pass brain uptake and washout, binding to brain synapto-somes, and localization in dog and monkey brain. J. Nucl. Med. 21 (1980) 947-952.PubMedGoogle Scholar
  87. 87.
    Kuhl, D.E., J.L. Wu, T.H. Lin, C. Selin and M. Phelps. “Mapping local cerebral blood flow by means of emission computed tomography of N-isopropyl-p-(123I)-iodoamphetamine (IMP). J. Nucl. Med. 22 (1981) p. 16.Google Scholar
  88. 88.
    Pressman, D. and G. Keighley. “The zone of activity in antibodies as determined by the use of radioactive tracers: The zone of activity of nephritoxic antikidney serum.” J. Immunol. (1948) 59. 141-146.PubMedGoogle Scholar
  89. 89.
    Khaw, B.A., G.A. Beller, E. Haber and T.W. Smith. “Localization of cardiac myosin specific antibody in myocardial infarction.” J. Clin. Invest. 58 (1976) 439-446.PubMedCrossRefGoogle Scholar
  90. 90.
    Beller, G.A., B.A. Khaw, E. Haber and T.W. Smith. “Localization of radiolabeled cardiac myosin-specific antibody in myocardial infarcts. Comparison with technetium-open stannous pyrophosphate.” Circulation 55 (1977) 74-78.PubMedGoogle Scholar
  91. 91.
    Sundberg, M.W., CF. Meares, D.A. Goodwin and C.I. Diamanti. “Selective binding of metal ions to macromolecules using bifunctional analogs of EDTA.” J. Med. Chem. 17 (1974) 1304-1307.PubMedCrossRefGoogle Scholar
  92. 92.
    Krejcarek, C.E. and K.L. Tucker. “Covalent attachment of chelating groups to macromolecules.” Biochem. Biophys. Res. Comm. 77 (1977) 581-585.PubMedCrossRefGoogle Scholar
  93. 93.
    Goodwin, D.A. and CF. Meares. “Bifunctional chelates for radiopharmaceutical labeling.” in R.P. Spencer, ed., in Radiopharmaceuticals, Structure Activity Relationships. (New York: Grune and Stratton, 1981).Google Scholar
  94. 94.
    Wagner, S.J. and M.J. Welch. “Gallium-68 labeling of albumen and albumen microspheres.” J. Nucl. Med. 20 (1979) 428-433.PubMedGoogle Scholar
  95. 95.
    Eckelman, W.C, S.M. Karesh and R.C Reba. “New compounds: Fatty acid and long chain hydrocarbon derivatives containing a strong chelating agent.” J. Pharm. Sci. 64 (1975) 704.706.PubMedCrossRefGoogle Scholar
  96. 96.
    Hnatowich, D.J., L. Warren. Private communication.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1983

Authors and Affiliations

  • David R. Elmaleh
    • 1
  • E. Livni
    • 1
  • S. Levy
    • 1
  1. 1.Massachusetts General HospitalBostonUSA

Personalised recommendations