Secondary Products in Tissue Culture

  • Y. Yamada
  • T. Hashimoto
Part of the Advances in Agricultural Biotechnology book series (AABI, volume 10)

Abstract

Secondary products in nature generally are closely associated with differentiation of plant cells. They are synthesized in a specific tissue at a certain developmental stage of a plant. Since the same genes for a secondary metabolite, e.g. an antho-cyanin of flower colour, are not only present in the cells of flower petals but also in all other living cells of the plant, there should be some regulatory mechanism responsible for the activation of the genes at the right cells and at the right time. When plant cells are cultured in vitro with an appropriate combination of plant hormones, they proliferate as an unorganized mass of cells. In some, but not necessarily all, of these morphologically de-differentiated cells, it is possible, at least in some plant species, to activate structural genes for secondary metabolism, thus producing in vitro the identical compounds as accumulate in differentiated tissues of the plant.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zenk MH (1980) Enzymatic synthesis of ajmalicine and related indole alkaloids. J. Nat. Products 43, 438 – 451.Google Scholar
  2. 2.
    Hahlbrock K (1981) Chapter 14, Flavonoids. In: The Biochemistry of Plants (Conn EE ed.) Vol.7, pp. 425-456, Academic Press.Google Scholar
  3. 3.
    Zenk MH (1978) The impact of plant cell culture on industry (Thorpe TA ed.) pp. 1 – 13, IAPTC, Calgary.Google Scholar
  4. 4.
    Fowler MW (1981) Plant cell biotechnology to produce desirable substances. Chemistry and Industry, 229 – 233.Google Scholar
  5. 5.
    Rhodes MJC, Kirsop BH (1982) Plant cell cultures as sources of secondary products. Biologist 29, 134 – 140.Google Scholar
  6. 6.
    Tabata M (1977) Recent advances in the production of medicinal substances by plant cell cultures. In: Plant Tissue Culture and Its Bio-technological Application (Barz W et al. eds.) pp.3-16, Springer-Verlag.Google Scholar
  7. 7.
    Butcher DN (1977) Secondary products in tissue cultures. In: Plant Cell, Tissue and Organ Culture (Reinert S, Bajaj YPS eds.) pp.668-693, Springer-Verlag.Google Scholar
  8. 8.
    Kurz WGW, Constabel F, (1979) Plant cell cultures, a potential source of pharmaceuticals. Adv. Appl. Microbiol. 25, 209 – 240.PubMedGoogle Scholar
  9. 9.
    Dougall DK (1979) Factors affecting the yields of secondary products in plant tissue cultures. In: Plant Cell and Tissue Culture: principles and applications ( Sharp WR et al. eds.) pp. 727 – 743. Ohio State Univ. Press.Google Scholar
  10. 10.
    Dougall DK (1981) Tissue culture and the study of secondary (natural) products. In: The Biochemistry of Plants (Conn EE ed.) Vol.7, pp.21-34, Academic Press.Google Scholar
  11. 11.
    Barz W, Ellis BE (1981) Plant Cell Cultures and their Biotechnological Potential. Ber. Deutsch. Bot. Ges. 94, 1 – 26.Google Scholar
  12. 12.
    Gathercole RWE, Street HE (1976) Isolation, stability and biochemistry of a p-fluorophenylalanine-resistant cell line of Acer pseudoplantanus L. New Phytol. 77, 2 9 – 41.Google Scholar
  13. 13.
    Hinz H, Zenk MH (1981) Production of Protoberberine alkaloids by cell suspension cultures of Berberis species. Naturwissenschaften 67, 620.Google Scholar
  14. 14.
    Zenk MH, Deus B (1982) Natural product synthesis by plant cell cultures. In: Plant Tissue Culture 1982 ( Fujiwara A ed.) pp. 391 – 394, IAPTC, Tokyo.Google Scholar
  15. 15.
    Constabel F (1967) Pigmentbildung in Kalluskulturen aus Beta- Ruben. Naturwissenschaften 54, 175 – 176.PubMedGoogle Scholar
  16. 16.
    Rai PP, Shok M (1982) Anthracene derivatives in tissue cultures of Cassia species indigenous to Nigeria. In: Plant Tissue Culture 1982 ( Fujiwara A ed.) pp. 277 – 278, IAPTC, Tokyo.Google Scholar
  17. 17.
    Kurz WGW, Chatson KB, Constabel F, Kutney JP, Choi LSL, Kolodziejczyk P, Sleigh SK, Staurt KL, Worth BR (1980) Alkaloid production in Catharanthus roseus cell cultures: Initial studies on cell lines and their alkaloid content. Phytochemistry 19, 2538 – 2587.Google Scholar
  18. 18.
    Kutney JP, Choi LSL, Kolodziejczyk P, Sleigh SK, Stuart KL, Worth BR, Kurz WGW,.Chatson-KB, Constabel F (1981) Alkaloid production in Catharanthus roseus cell cultures V. Alkaloids from the 176G, 299Y, 340Y, and 951G cell lines. J. Nat. Products 44, 536 – 540.Google Scholar
  19. 19.
    Kutney JP, Choi LSL, Kolodziejczyk P, Sleigh SK, Stuart KL, Worth BR, Kurz WGW, Chatson KB, Constabel F (1980) Alkaloid production in Catharanthus roseus cell cultures III. Catharanthine and other alkaloids from the 200GW cell line. Heterocycles 14, 765 – 768.Google Scholar
  20. 20.
    Kurz WGW, Chatson SK, Stuart KL, Worth BR (1981) Alkaloid production in Catharanthus roseus cell cultures VIII. Characterisation of the PRL #200 cell line. Planta Med. 42, 22 – 31.PubMedGoogle Scholar
  21. 21.
    Kurz WGW, Chatson SK, Constabel F, Kutney JP, Choi LSL, Kolodeijczyk P, Sleigh SK, Stuart KL,.Worth BR (1980) Alkaloid production in Catharanthus roseus cell cultures IV. Characterization of the 953 cell line. Helv. Chim. Acta 63, 1891 – 1896.Google Scholar
  22. 22.
    Deus B (1978) Zellkulturen von Catharanthus roseus. In: Proc. Intl. Symp. Plant Cell Culture ( Alfermann AW, Reinhard E, eds.) pp. 118 – 123, Ges. S.U. mbH., Munich.Google Scholar
  23. 23.
    Zenk MH, El-Shagi H, Arens H, Stfickigt J, Weiler EW, Deus B (1977) Formation of the indole alkaloids serpentine and ajmalicine in cell suspension cultures of Catharanthus roseus. In: Plant Tissue Culture and Its Bio-technological Application ( Zenk MH, El-Shagi H, Arens H, Stfickigt J, Weiler EW, Deus B. eds.) pp. 27 – 43, Springer-Verlag.Google Scholar
  24. 24.
    Deus B, Zenk MH (1982) Exploitation of plant cells for the production of natural compounds. Biotech. Bioengi. 24, 1965 – 1974.Google Scholar
  25. 25.
    Limbourg B, Prevost G (1971) Utilisation de Marqueurs Genetiques en vue de l’etude de la Recombinaison de cellules vegetales en culture. Colloques internationaux C.N.R.S. 193, 241 – 243.Google Scholar
  26. 26.
    Zieg RG, Zito SW, Staba EJ (1983) Selection of high pyrethrin producing tissue cultures. Planta Med. 43, 88-91.Google Scholar
  27. 27.
    Sato F, Yamada Y. High berberine-producing cultures of Coptis japonica cells. Phytochemistry (in press)Google Scholar
  28. 28.
    Yamamoto H, Ishida M, Tomimori T (1981) Studies of the fundamental conditions on growth and alkaloid formation of the callus cultures of Coptis japonica var. japonica (III) Effects of cloning and mutagens. Shoyakugaku Zasshi 35, 15 – 21.Google Scholar
  29. 29.
    Yamada Y, Watanabe K (1980) Selection of high vitamin B producing strains in cultured green cells. Agri. Biol. Chem. 44, 2683 – 2687.Google Scholar
  30. 30.
    Eichenberger ME (1951) Sur une mutation survehue dans une culture de tissus de carotte. C. R. Soc. Biol. 145, 239 – 240.Google Scholar
  31. 31.
    Naef J, Turian G (1963) Sur les carotenoides du tissu cambiae de racine de carrote cultiv in vitro. Phytochemistry 2, 173 – 177.Google Scholar
  32. 32.
    Alfermann W, Reinhard E (1971) Isolierung anthocyanhaltiger und Anthocyanfreier Gewebestmme von Daucus carota: Elnfluss von Auxinen auf Anthocyanbildung. Experientia 27, 353 – 354.Google Scholar
  33. 33.
    Alfermann AW, Merz D, Reinhard E (1975) Induktion der Antho- cyanbiosynthese in Kalluskulturen von Daucus carota. Planta Med. Suppl. 8: 70 – 78.Google Scholar
  34. 34.
    Sugano N, Miya S, Nishi A (1971) Carotenoid synthesis in a suspension culture of carrot cells. Plant Cell Physiol. 12, 525 – 531.Google Scholar
  35. 35.
    Nishi A, Yoshida M, Mori M, Sugano N (1974) Isolation of variant carrot cell lines with altered pigmentation. Phytochemistry 13, 1653 – 1656.Google Scholar
  36. 36.
    Kinnersley AM, Dougall DK (1980) Increase in anthocyanin yield from wild carrot cell cultures by a selection system based on cell-aggregate size. Planta 149, 200 – 204.Google Scholar
  37. 37.
    Dougall DK, Johnson JM, Whitten GH (1980) A clonal analysis of anthocyanin accumulation by cell cultures of wild carrot. Planta 149, 292 – 297.Google Scholar
  38. 38.
    Ohlsson AB, Bjork L, Gatenbeck S (1983) Effect of light on cardenolide production by Digitalis lanata tissue cultures. Phytochemistry 22, 2447 – 2450.Google Scholar
  39. 39.
    Yamamoto Y, Mizuguchi R, Yamada Y (1982) Selection of a high and stable pigment-producing strain in cultured Euphorbia millii cells. Theor. Appl. Genet. 61, 113 – 116.Google Scholar
  40. Yamada Y, Fujita Y (1983) Production of useful compounds in culture. In: Handbook of Plant Cell Culture, Vol.1 (Evans DA et al. eds.) pp.717 – 728, Macmillan.Google Scholar
  41. 40.
    Ueda S, Kobayashi K, Muramatsu T, Inouye H (1981) Studies on monoterpene glucosides and related natural products. Part XI. Iridoid glucosides of cultured cells of Gardenia j asminoides f. grandiflora. Planta Med. 41, 186 – 191.PubMedGoogle Scholar
  42. 41.
    Eriksson T (1967) Effects of ultraviolet and X-ray radiation on IR vitro cultivated cells of Haplopappus gracilis. Physiol. Plant. 20, 507 – 518.Google Scholar
  43. 42.
    Stickland RG, Sunderland N (1972) Production of anthocyanins, flavonols and -chlorogenic acids by cultured callus tissues of Haplopappus gracilis. Ann. Bot. 36, 443 – 457.Google Scholar
  44. 43.
    Yamada Y, Hashimoto T (1982) Production of tropane alkaloids in cultured cells of Hyoscyamus niger. Plant Cell Rep. 1, 101 – 103.Google Scholar
  45. 44.
    Hashimoto T, Yamada Y (1983) Scopolamine production in suspension cultures and redifferentiated roots of Hyoscyamus niger. Planta Med. 47, 195 – 199.PubMedGoogle Scholar
  46. 45.
    Watanabe K, Yano S, Yamada Y (1982) The selection of cultured plant cell lines producing high levels of biotin. Phytochemistry 21, 513 – 516.Google Scholar
  47. 46.
    Mizukami H, Konoshima M, Tabata M (1978) Variation in pigment production in Lithospermuni erythrorhizon callus cultures. Phytochemistry 17, 95 – 97.Google Scholar
  48. 47.
    Tabata M, Ogino T, Yoshioka K, Yoshikawa N, Hiraoka N (1978) Selection of cell lines with higher yield of secondary products. In: Frontiers of Plant Tissue Culture 1978 ( Thorpe TA ed.) pp. 213 – 222, IAPTC, Calgary.Google Scholar
  49. 48.
    Koblitz H, Schumann U, Bflhm H, Franke J (1975) Tissue cultures of alkaloid plants. 4. Macleaya microcarpa (Maxim.) Fedde. Experientia 31, 768 – 769.Google Scholar
  50. 49.
    Bohm H, Franke J (1982) Accumulation and excretion of alkaloids by Macleaya microcarpa cell cultures I. Experiments on solid medium. Biochem. Physiol. Pflanzen 177, 345 – 356.Google Scholar
  51. 50.
    Berlin J (1980) Para-fluorophenylalanine resistant cell lines of tobacco. Z. Pflanzenphysiol. 97, 317 – 324.Google Scholar
  52. 51.
    Tabata M, Hiraoka N (1976) Variation of alkaloid production in Nicotiana rustica callus cultures. Physiol. Plant. 38, 19 – 23.Google Scholar
  53. 52.
    Ohta S, Matsui O, Yatazawa M (1978) Culture conditions for nicotine production in tobacco tissue culture. Agric. Biol. Chem. j42, 1245 – 1251.Google Scholar
  54. 53.
    Ohta S, Kajima Y, Yatazawa M (1978) Some accounts of nicotine biosynthesis in tobacco callus tissues by the use of effective and ineffective strains. Agric. Biol. Chem. 42, 1733 – 1738.Google Scholar
  55. 54.
    Ogino T, Hiraoka N, Tabata M (1978) Selection of high nicotine- producing cell lines of tobacco callus by single-cell cloning. Phytochemistry 17, 1907 – 1910.Google Scholar
  56. 55.
    Matsumoto T, Ikeda T, Kanno N, Kisaki T, Noguchi M (1980) Selection of high ubiquinone 10-producing strain of tobacco cultured cells by cell cloning technique. Agric. Biol. Chem. 44, 967 – 969.Google Scholar
  57. 56.
    Matsumoto T, Ikeda T, Okimura C, Obi Y, Kisaki T, Noguchi M (1982) Production of ubiquinone 10 (UQ-10) by UQ highly producing strains selected by a cell cloning technique. In: Plant Tissue Culture 1982 ( Fujiwara A, ed.) pp. 275 – 276, IAPTC, Tokyo.Google Scholar
  58. 57.
    Palmer JE, Widholm J (1975) Characterization of carrot and tobacco cell cultures resistant to p-fluorophenylalanine. Plant Physiol. 56, 233 – 238.PubMedGoogle Scholar
  59. 58.
    Berlin J, Widholm J (1977) Correlation between phenylalanine ammonia lyase activity and phenolic biosynthesis in pfluro-phenylalanine-sensitive and resistant tobacco and carrot tissue cultures. Plant Physiol. 59, 550 – 553.PubMedGoogle Scholar
  60. 59.
    Berlin J, Kukoschke KG, Knobloch K-H (1981) Selection of tobacco cell lines with high yields of cinnamoyl putrescines. Planta Med. 42, 173 – 180.PubMedGoogle Scholar
  61. 60.
    Furuya T, Ishii T (1972) Verfahren zur Herstellung eines Saponine enthaltenden Ginseng-Medikamentes. German Patent (Offen.) 2-143-946.Google Scholar
  62. 61.
    Sasse F, Heckenberg U, Berlin J (1982) Accumulation of S-carboline alkaloids and serotonin by cell cultures of Pegnum harmala L. Plant Physiol. 69, 400 – 404.PubMedGoogle Scholar
  63. 62.
    Heble MR, Narayanaswamy S, Chadha MS (1974) Tissue differentiation and plumbagin synthesis in variant cell strains of Plumbago zeylanica L. in vitro. Plant Sci. Lett. 2, 405 – 409.Google Scholar
  64. 63.
    Shamina ZB, Kovaleva TA, Butenko TG (1972) Effect of nitrogen mustard on Rauwolfia tissue culture. Phytomorphology 22, 260 – 264.Google Scholar
  65. 64.
    Murphy TM, Hamilton CM (1979) A strain of Rosa damascena cultured cells resistant to ultraviolet light. Plant Physiol. 936 – 941.Google Scholar
  66. 65.
    Yamakawa T, Ohtsuka H, Onomichi K, Kodama T, Minoda Y (1982) Product ion of anthocyanin pigments by grape cell culture. In: Plant Tissue Culture 1982 ( Fujiwara A, ed.) pp. 273 – 274, IAPTC, Tokyo.Google Scholar
  67. 66.
    Sternheimer EP(1954) Method of culture and growth of maize endosperm in vitro. Bull. Torrey Bot. Club 81, 111 – 113.Google Scholar
  68. 67.
    Straus J (1958) Spontaneous changes in corn endosperm tissue cultures. Science 128, 537 – 538.Google Scholar
  69. 68.
    Kutney JP, Aweyn B, Choi LSL, Kolodziejczyk P, Kurz WGW, Chatson KB, Constabel F (1981) Alkaloid production in Catharanthus roseus cell culture IX. Biotransformation studies with 3 1,4’-dehydrovinblastine. Heterocycles 16: 1169 – 1171.Google Scholar
  70. 69.
    Reinhard E, Alfermann AW (1980) Biotransformation by plant cell cultures. Adv. Biochem. Eng. 16, 4 9 – 83.Google Scholar
  71. 70.
    Ellis B (1982) Cell-to-cell variability in secondary metabolite production within cultured plant cell populations. In: Plant Tissue Culture 1982 ( Fujiwara A, ed.) pp. 395 – 396, IAPTC, Tokyo.Google Scholar
  72. 71.
    Weiler EW, Zenk MH (1976) Radioimmunoassay for the determination of digoxin and related compounds in Digitalis lanata. Phytochemistry 15, 1537 – 1545.Google Scholar
  73. 72.
    Arens H, Stttcklgt J, Weiler EW, Zenk MH (197 8) Radioimmunoassays for the determination of the indole alkaloids ajmalicine and serpentine in plants. Planta Med. 34, 37 – 46.Google Scholar
  74. 73.
    Hsu A-F, Brower D, Stskovitz RB, Chen PK, Bills DD (1983) Radioimmunoassay for quantitative determination of morphine in capsules of Papaver somniferum. Phytochemistry 22, 1665 – 1669.Google Scholar
  75. 74.
    Weiler EW, Zenk MH (1979) Autoradiographic immunoassay (ARIA): A rapid technique for the semiquantitative mass screening of haptens. Anal. Biochem. 92, 147 – 155.PubMedGoogle Scholar
  76. 75.
    Schulte U, Zenk MH (1977) A replica method for plant cells. Physiol. Plant. 39, 139 – 142.Google Scholar
  77. 76.
    Berlin J, Widholm JM (197 8) Amino acid uptake by amino acid resistant tobacco cell lines. Z. Naturforsch. 33C, 634 – 640.Google Scholar
  78. 77.
    Berlin J, Witte L, Hammer J, Kusoschke KG, Zimmer A, Pape D (1982) Metabolism of p-fluorophenylalanine in pfluorephenylalanine sensitive and resistant tobacco cell cultures. Planta 155, 244 – 250.Google Scholar
  79. 78.
    Berlin J, Widholm JM (1977) Correlation between phenylalanine ammonia lyase activity and phenolic biosynthesis in p-fluoro- phenylalanine-sensitive and -resistant tobacco and carrot tissue cultures. Plant Physiol. 59, 550 – 553.PubMedGoogle Scholar
  80. 79.
    Berlin J, Knobloch K-H, Httfle G, Witte L (1982) Biochemical characterization of two tobacco cell lines with different levels of cinnamoyl putrescines. J. Nat. Products 45, 83 – 87.Google Scholar
  81. 80.
    Selby C, Turnbull A, Collin HA (1980) Comparison of the onion plant (Allium cepa) and onion tissue culture. II. Stimulation of flavour precursor synthesis in onion tissue cultures. New Phytol. 84, 307 – 312.Google Scholar
  82. 81.
    Knobloch K-H, Hansen B, Berlin J (1981) Medium-induced formation of indole alkaloids and concomitant changes of interrelated enzyme activities in cell suspension cultures of Catharanthus roseus. Z. Naturforsch. 36C, 40 – 43.Google Scholar
  83. 82.
    Grosse W, Karisch M, Schroder P (1983) Serotonin Biosynthesis and its regulation in seeds of Juglans regia L. Z. Pflanzenphysiol. 110, 221 – 229.Google Scholar
  84. 83.
    Selby C, Galpin IJ, Collin HA (1979) Comparison of the onion plant (Allium cepa) and onion tissue culture I. Aliinase activity and flavour precursor compounds. New Phytol. 83, 351 – 359.Google Scholar
  85. 84.
    Berlin J, Sasse F, Knobloch K-H (1982) Biochemical characterization of low and high yielding tobacco cell cultures. In: Plant Tissue Culture 1982 ( Fujiwara A, ed.) pp. 329 – 330, IAPTC, Tokyo.Google Scholar
  86. 85.
    Widholm JM (1977) Selection and characterization of biochemical mutants. In: Plant Tissue Culture and Its Bio-Technological Application ( Widholm JM. eds.) pp. 112 – 122, Springer-Verlag.Google Scholar
  87. 86.
    Maliga P (1978) Resistant mutants and their use in genetic manipulation. In: Frontiers of Plant Tissue Culture ( Thorpe TA, ed.) pp. 381 – 401, IAPTC, Calgary.Google Scholar
  88. 87.
    Drew SW, Demain AL (1977) Effect of primary metabolites on secondary metabolism. Ann. Rev. Microbiol. 31, 343 – 356.Google Scholar
  89. 88.
    Margna U (1977) Control at the level of substrate supply — An alternative in the regulation of phenylpropanoid accumulation in plant cells. Phytochemistry 16, 419 – 426.Google Scholar
  90. 89.
    Scott AI, Mizukami H, Lee S-L (1979) Characterization of a 5-methyltryptophan resistant strain of Catharanthus roseus cultured cells. Phytochemistry 1J3, 7 95 – 798.Google Scholar
  91. 90.
    Schallenberg J, Berlin J (1979) 5-Methyltryptophan resistant cells of Catharanthus roseus. Z. Naturforsch. 34C, 541 – 545.Google Scholar
  92. 91.
    Collins GB, Legg PD (1979) Use of tissue and cell culture methods in tobacco improvement. In: Plant Cell and Tissue Culture; Principles and Applications ( Sharp WR et al. eds.) pp. 585 – 614, Ohio State Univ. Press.Google Scholar
  93. 92.
    Vournakis JN, Elander RP (1983) Genetic manipulation of antibiotic-producing microorganisms. Science 219, 703 – 709.PubMedGoogle Scholar
  94. 93.
    Constable F, Rambold S, Shyluk JP, LeTourneau D, Kurz WGW, Kutney JP (1981) Alkaloid production in Cathararithus roseus cell cultures X. Mitotoxic effect of 31,41-dehydrovinblastine. Z. Pflanzenphysiol. 105, 53 – 58.Google Scholar
  95. 94.
    Yamada Y, Hirabayashi Y, Morikawa H, Onishi N, Hayashi Y (in preparation)Google Scholar
  96. 95.
    Mino M, Yamada Y (1983) Genetic analysis of cultured cells that produce useful secondary metabolites; a theory. Chemical Regulation of Plants 18, 91 – 99 (in Japanese).Google Scholar
  97. 96.
    Yamada Y, Mino M, Tanaka Y, Morimoto H (in preparation)Google Scholar
  98. 97.
    Dhoot GK, Henshaw GG (1977) Organization and alkaloid production in tissue cultures of Hyoscyamus niger. Ann. Bot. 41, 943 – 949.Google Scholar
  99. 98.
    Kodama T, Yamakawa T, Minoda Y (1980) Rotenoid Biosynthesis by Derris elliptica. Agric. Biol. Chem. 44, 2387 – 2390.Google Scholar
  100. 99.
    Hagimori M, Matsumoto T, Kisaki T (1980) Studies on the production of D1gitalis cardeno1ides by plant tissue culture. I. Plant & Cell Physiol. 21, 1391 – 1404.Google Scholar
  101. 100.
    Kartnig TH, Kummer-Fustinioni G, Heydel B (1983) The effect of aging on the formation of secondary products by tissue cultures of Digitalis purpurea. Planta Med. 47, 247 – 248.PubMedGoogle Scholar
  102. 101.
    Maeda Y, Fujita Y, Yamada Y (1983) Callus – formation from protoplasts of cultured Lithospermum erythrorhizon cells. Plant Cell Rep. 2, 17 9 – 182.Google Scholar
  103. 102.
    Fujita Y, Maeda Y, Yamada Y (1983) Production of shikonin derivatives in cultured Lithospermum erythrorhizon cells. II. Productivity of shikonin derivatives in calli derived from protoplasts. Abstracts of 8th Plant Tissue Culture Symposium, pp.58, Toyama (in Japanese).Google Scholar
  104. 103.
    Meins F Jr (1983) Heritable variation in plant cell culture. Ann. Rev. Plant Physiol. 34, 327 – 346.Google Scholar
  105. 104.
    Flick CE, Evans DA (1983) Isolation, culture and plant regeneration from protoplasts isolated from flower petals of ornamental Nicotiana species. Z. Pflanzenphysiol. 109, 379 – 383.Google Scholar
  106. 105.
    Torry JG (1967) Morphogenesis in relation to chromosomal constitution in long-term plant tissue culture. Physiol. Plant. 20, 265 – 275.Google Scholar
  107. 106.
    Mino M, Hashimoto T, Fatokun CA, Yamada Y (in preparation)Google Scholar
  108. 107.
    Marton L, Sidorov V, Biasini G, Maliga P (1982) Compliment- ation in somatic hybrids indicates four types of nitrate reductase deficient lines in Nicotiana plumbaginifolia. Mol. Gen. Genet. 187, 1 – 3.Google Scholar
  109. 108.
    Sung ZR, Smith R, Horowitz J (1979) Quantitative studies of embryogenesis in normal and 5-methyltryptophan-resistant cell lines of wild carrot. Planta 147, 236 – 240.Google Scholar
  110. 109.
    Malmberg RL (1979) Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta 146, 243 – 244.Google Scholar
  111. 110.
    Bingham ET, Hurley LV, Kaatz DM, Saunders JW (1975) Breeding alfalfa which regenerates from callus tissue in culture. Crop Sci. 15, 719 – 721.Google Scholar
  112. 111.
    Wenzel G, Uhrig H (1981) Breeding for nematode and virus resistance in potato via anther culture. Theor. Appl. Genet. 59, 333 – 340.Google Scholar
  113. 112.
    Christianson ML, Warnick DA, Carlson PS (1983) A morphogenetically competent soybean suspension culture. Science 222, 632 – 634.PubMedGoogle Scholar
  114. 113.
    Tabata M, Hayashi K, Konoshima M (1977) Variation in chromosome constitution and alkaloid composition in anther derived callus cultures and regenerated plants of Datura innoxia. Yakugaku Zasshi 97, 746 – 752.PubMedGoogle Scholar
  115. 114.
    Mok MC, Gabelman WH, Skoog F (1975) Carotenoid synthesis in carrot tissue cultures. Plant Physiol. Suppl. 56, 29.Google Scholar
  116. 115.
    Hashimoto T, Yamada Y (unpublished results).Google Scholar
  117. 116.
    Kinnersley AM, Dougall DK (1982) Variation in nicotine content of tobacco callus cultures. Planta 154, 447 – 453.Google Scholar
  118. 117.
    Hirotani M, Furuya A (1977) Restoration of cardenolide-synthesis in redifferentiated shoots from callus cultures of Digitalis purpurea. Phytochemistry 16, 610 – 611.Google Scholar
  119. 118.
    Benjamin BD, Heble MR, Chadha MS (1979) Alkaloid synthesis in tissue cultures and regenerated plants of Tylophora iridica MERR. Z. Pflanzenphysiol. 92, 77 – 84.Google Scholar
  120. 119.
    Sipahimalani AT, Bapat VA, Rao PS, Chadha MS (1981) Biosynthetic potential of cultured tissues and regenerated plants of Physalis minima. J. Nat. Products 44, 114 – 118.Google Scholar
  121. 120.
    Ozeki Y, Komamine A (1981) Induction of anthocyanin synthesis in relation to embryogenesis in a carrot suspension culture. Physiol. Plant. 53, 570 – 577.Google Scholar
  122. 121.
    Cori CF, Gluecksohn-Waelsch S, Shaw PA, Robinson C (1983) Correlation of a genetically caused enzyme defect by somatic cell hybridization. Proc. Natl. Acad. Sci. USA 80, 6611 – 6614.PubMedGoogle Scholar
  123. 122.
    Bianchi F, Cornelissen PTJ, Gerats AGM, Hogervorst JMW (1978) Regulation of gene action in Petunia hybrida; Unstable alleles of a gene for flower colour. Theor. Appl. Genet. 53, 157 – 167.Google Scholar
  124. 123.
    Shifriss O, Paris HS (1981) Identification of modifier genes affecting the extent of precocious fruit pigmentation of Cucurbita pepo L. J. Amer. Soc. Hort. Sci. 106, 653 – 660.Google Scholar
  125. 124.
    Sastry GRK (1982) Genetic instability of anthocyanin production in Impatiens balsamina. Theor. Appl. Genet. 63, 87 – 95.Google Scholar
  126. 125.
    Scandalios JG, Baum JA (1982) Regulatory gene variation in higher plants. Adv. Genetics 21, 347 – 370.Google Scholar
  127. 126.
    Polacco JC, Thomas AL, Bledsoe PJ (1982) A soybean seed urease- null produces urease in cell culture. Plant Physiol. 69, 1233PubMedGoogle Scholar
  128. 127.
    Ackerman WL (1971) A chromosomal translocation in a diploid camellia. J. Hered. 62, 121 – 122.Google Scholar
  129. 128.
    Murata M, Orton TJ (1983) Chromosome structural changes in cultured celery cells. In Vitro. 19, 83 – 89.Google Scholar
  130. 129.
    Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int. Rev. Cytol. 11A, 113 – 144.Google Scholar
  131. 130.
    Larkin PJ, Scowcroft WR (1981) Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60, 197 – 214.Google Scholar
  132. 131.
    Fujita Y, Hara Y, Suga C, Morimoto T (1981) Production of shikonin derivatives by cell suspension cultures of Lithosper- mum erythrorhizon. II. A new medium for the production of shikonin derivatives. Plant Cell Rep. 1, 61 – 63.Google Scholar
  133. 132.
    Fosket DE, Radin DN (1983) Induction of carotenogenesis in cultured cells of Lycopersicon esculentum. Plant Sci. Lett. 60, 165 – 175.Google Scholar
  134. 133.
    Kinnersley AM, Dougall DK (1980) Correlation between the nicotine content of tobacco plants and callus cultures. Planta 149, 205 – 206.Google Scholar
  135. 134.
    Miller RD, Collins GB, Davis DL (1983) Effects of nicotine precursors on nicotine content in callus cultures of burley tobacco alkaloid lines. Crop Sci. 23, 561 – 565.Google Scholar
  136. 135.
    Leweke B, Forkmann G (1982) Genetically controlled anthocyanin synthesis in cell cultures of Matthiola incana. Plant Cell Rep. 1, 98 – 100.Google Scholar
  137. 136.
    Luckner M (1980) Exprssion and control of secondary metabolism. In: Secondary Plant Products ( Luckner M, eds.) pp. 23 – 63, Springer-Verlag.Google Scholar
  138. 137.
    Tomes DT, Swanson EB (1982) Application of in vitro selection to plant improvement. In: Application of Plant Cell and Tissue Culture to Agriculture & Industry. ( Tomes DT et al. eds.) pp. 25 – 43, Univ. Guelph.Google Scholar
  139. 138.
    Vunsh R, Aviv D, Galun E (1982) Valine resistant plants derived from mutated haploid and diploid protoplasts of Nicotiana sylvestris and N. tabacum. Theor. Appl. Genet. 64, 51 – 58.Google Scholar
  140. 139.
    Ranch JP, Rick S, Brotherton JE, Widholm JM (1983) Expression of 5-methyltryptophan resistance in plants regenerated from resistant cell lines of Datura innoxia. Plant Physiol. 71, 136 – 140.PubMedGoogle Scholar
  141. 140.
    Chaleff RS (1981) Genetics of Higher Plants: Applecations of Cell Culture. Cambridge Univ. Press.Google Scholar
  142. 141.
    Radin DN, Carlson PS (1978) Herbicide-tolerant tobacco mutants selected in situ and revovered via regeneration from cell culture. Genet. Res. Camb. 32, 85 – 89.Google Scholar
  143. 142.
    Prestwich GD, Gayen AK, Phirwa S, Kline TB (1983) 29-fluoro-phytosterols: novel pro-insecticides which cause death by dealkylation. Bio/Technology 1, 62 – 65.Google Scholar
  144. 143.
    Scowcroft WR, Larkin PJ (1982) Somaclonal variation: a new option for plant improvement. In: Plant Improvement and Somatic Cell Genetics. (Scowcroft WR, Larkin PJ. eds.) pp. 159 – 178, Academic Press.Google Scholar
  145. 144.
    Skirvin RM (1978) Natural and induced variation in tissue culture. Euphytica 21, 241 – 266.Google Scholar
  146. 145.
    Bidney LD, Shepard JF (1981) Phenotypic variation in plants regenerated from protoplast: the potato system. Biotechnol. Bioeng. 23, 2691 – 2701.Google Scholar
  147. 146.
    Earle ED, Demarly Y eds. (1982) Variability in Plants Regenerated from Tissue Culture. Praeger.Google Scholar
  148. 147.
    Skirvin RM, Janick J (1976) Tissue culture-induced variation in scented Pelargonium spp. J. Amer. Soc. Hort. Sci. 101, 281 – 290.Google Scholar
  149. 148.
    George L, Rao PS (1983) Yellows-seeded variants in in vitro regenerants of mustard (Brassica jumcea Coss var, 1Rai-51) Plant Sci. Lett. 30, 327 – 330.Google Scholar
  150. 149.
    Evans DA, Sharp WR (19.83) Single gene mutations in. tomato plants regenerated from tissue culture. Science 221, 949 – 951.Google Scholar
  151. 150.
    Nakamura A, Itagaki R, Kobayashi K (1974) Studies on the haploid method of breeding by culture in tobacco IV. Comparison between doubled haploid lines and normal diploid lines of the two tobacco varieties Hicks 2 and Cocker 139. Iwata Tob. Exp. Stn. Bull. 6, 29 – 34.Google Scholar
  152. 151.
    Oinuma T, Yoshida T (1974) Genetic variation among doubled haploid lines of burley tobacco varieties. Japan J. Breed. 24, 211 – 216.Google Scholar
  153. 152.
    Burk LG, Matzinger DF (1976) Variation among anther-derived doubled haploids from an inbred line of tobacco. J. Hered. 67, 381 – 384.Google Scholar
  154. 153.
    Burk LG, Chaplin JF (1980) Variation among anther-derived haploids from a multiple disease-resistant tobacco hybrid. Crop Sci. 20, 334 – 338.Google Scholar
  155. 154.
    Burk LG, Gwynn GR, Chapin JF (1972) Diplodized haploids from aseptically cultured anthers of Nicotiana tabacum. J. Heredity 63, 355 – 360.Google Scholar
  156. 155.
    Yamada Y, Muranaka T, Sato F (unpublished results).Google Scholar
  157. 156.
    Hiraoka N, Tabata M (1974) Alkaloid production by plants regenerated from cultured cells of Datura innoxia. Phytochemistry 13, 1671 – 1675.Google Scholar
  158. 157.
    Abou-Mandour A, Fischer S, Czygan F-C (1979) Regeneration von intakten Pflanzen aus diploiden und haploiden Kalluszellen von Catharanthus roseus. Z. Pflanzenphysiol. 91, 83 – 88.Google Scholar
  159. 158.
    Ikuta A, Syono K, Furuya T (1975) Alkaloids in plants regenerated from Coptis callus cultures. Phytochemistry 14, 1209 – 1210.Google Scholar
  160. 159.
    Austin S, Cassells AC (1983) Variation between plants regenerated from individual calli produced from separated potato stem callus cells. Plant Sci. Lett. 31, 107 – 114.Google Scholar
  161. 150.
    Jung-Heiliger H, Horn W (1980) Variation nach mutagener Behandlung von Stecklingen und in vitro-KuIturen bei Chrysanthemum. Z. Pflanzenztichtg. 85, 185 – 199.Google Scholar
  162. 161.
    Hackett WP, Anderson JM (1967) Aseptic multiplication and maintenance of differentiated carnation shoot tissue derived from shoot apices. Proc. Am. Soc. Hort. Sci. 90, 365 – 369.Google Scholar
  163. 162.
    Dulieu H (1972) The combination of cell and tissue culture with mutagenesis for the induction and isolation of morphological or developmental mutants. Phytomorphology 22, 283 – 296.Google Scholar
  164. 163.
    Howland GP, Hart RW (1977) Radiation biology of cultured plant cells. In: Plant Cell, Tissue and Organ Culture ( Howland GP, Hart RW eds.) pp. 731 – 756, Springer-Verlag.Google Scholar
  165. 164.
    Handro W (1981) Mutagenesis and in vitro selection. In Plant Tissue Culture: Methods and Applications in Agriculture (Thorpe TA ed.) pp.155-180, Academic Press.Google Scholar
  166. 165.
    Broertjes C,-Roest S, Bokelmann GS (1976) Mutation breeding of Chrysanthemum morifolium RAM. using in vivo and in vitro adventitious bud techniques. Euphytica 25, 11 – 19.Google Scholar
  167. 166.
    Rowson JM (1944) Increased alkaloidal contents of induced polyploids of Datura. Nature 15, 81 – 82.Google Scholar
  168. 167.
    Rowson JM (1945) Increased alkaloidal contents of induced polyploids of Datura, Atropa and Hyoscyamus. Quart. J. Pharm. Pharmacol. 18, 175 – 193.Google Scholar
  169. 168.
    Heinz DJ, Mee GWP (1970) Colchicine-induced polyploids from cell suspension cultures of sugarcane. Crop Sci. 10, 696 – 699.Google Scholar
  170. 169.
    Eapen S, Ragan TS, Chadha MS, Heble MR (1978) Biosynthetic and cytological studies in tissue cultures and regenerated plants of haploid Atropa belladonna. Can. J. Bot. 56, 2781 – 2784.Google Scholar
  171. 160.
    Keller WA, Setterfield G, Douglas G, Gleddie S, Nakamura C (1982) Production, characterization and utilization of somatic hybrids of higher plants. In: Application of Plant Cell and Tissue Culture to Agriculture & Industry ( Keller WA, Setterfield G, Douglas G, Gleddie S, Nakamura C. eds.) pp. 81 – 114, Guelph Univ.Google Scholar
  172. 171.
    Schieder O (1982) Somatic hybridization; A new method for plant improvement. In: Plant Improvement and Somatic Cell Genetics ( Schieder O. eds.) pp. 239 – 253, Academic Press.Google Scholar
  173. 172.
    Shepard JF, Bindey D, Barsby T, Kemble R (1983) Genetic transfer in plants through interspecific protoplast fusion. Science 219, 683 – 688.PubMedGoogle Scholar
  174. 173.
    Evans DA (1983) Agricultural applications of plant protoplast fusion. Bio/Technology 1, 253 – 261.Google Scholar
  175. 174.
    Romeike A (1961) Die Scopolaminbildung in der Artkreuzung Datura ferox L. X Datura stramonium L. Kulturpflanze J ), 171.Google Scholar
  176. 175.
    Ikenaga T, Abe M, Itakura A, Ohashi H (1979) Alkaloid contents in leaves of artificial interspecific F.. hybrids between Duboisia myosproides and D. leichhardtii. Planta Med. 35, 51 – 55.Google Scholar
  177. 176.
    Corduan G, Spix C (1978) Anther culture of a hybrid of the genus Hyoscyamus; A rapid method to obtain homozygous recombinants. In: Production of Natural Compounds by Cell Culture Methods ( Alferman AW, Reinhard E, eds.) pp. 295 – 302, Gesellschaft fur Strahlen- und Umweltforschung, Mlinchen.Google Scholar
  178. 177.
    Schieder O (1978) Somatic hybrids of Datura innoxia Mill. + Datura discolor Bernh. and of Datura innoxia Mill. + Datura stramonium L. var. tatula L. I. Selection and characterization. Molec. Gen. Genet. 162, 113 – 119.Google Scholar
  179. 178.
    Schieder 0(1980) Somatic hybrids between a herbaceous and two tree Datura species. Z. Pflanzenphysiol. 98, 119-127.Google Scholar
  180. 179.
    Romeike A (1962) Uber das Vorkommen von 6-Hydroxyhyoscyamine in Datura. Naturwissenschaften 49, 2 81.Google Scholar
  181. 170.
    Evans WC, Stevenson NA, Timoney RF (1969) Datura leichhardtii Mull, ex Benth. V. Alkaloidal constituents of the cross D. leichhardtii X D. innoxia. Planta Med. 17, 120 – 126.PubMedGoogle Scholar
  182. 181.
    Griffin WJ (1975) The isolation of 6-hydroxyhyoscyamine from a Duboisia hybrid. Naturwissenschaften 62, 97.PubMedGoogle Scholar
  183. 182.
    Ninnemann H, Jilttner F (1981) Volatile substances from tissue cultures of potato, tomato and their somatic fusion products - Comparison of gas chromatographic patterns for identification of hybrids. Z. Pflanzenphysiol. 103, 95 – 107.Google Scholar
  184. 183.
    Fleck WF (1979) Genetic approaches to new streptomycete products. In: Proceedings of the third international symposium on genetics of industrial microorganisms ( Fleck WF, eds.) pp. 117 – 122, American Society for Microbiology.Google Scholar
  185. 184.
    Nitzsche W, Wenzel G (1977) Haploids in plant breeding. Beihefte zur Zeitschrift fur Pflanzenztichtung 3, 1 – 101.Google Scholar
  186. 185.
    Maheshwari SC, Tyagi AK, Malnotra K (1980) Induction of haploids from pollen grains in angiosperms - the current status. Theor. Appl. Genet. 58, 193 – 206.Google Scholar
  187. 186.
    Wilfred AK, Stringam GR (1978) Production and utilization of microspore-derived haploid plants. In: Frontiers of Plant Tissue Culture ( Thorpe TA ed.) pp. 113 – 122, IAPTC, Calgary.Google Scholar
  188. 187.
    Collins GB, Genovesi AD (1982) Anther culture and its application to crop improvement. In: Application of Plant Cell and Tissue Culture to Agriculture & Industry ( Tomes DT et al. eds.) pp. 1 – 24, Univ. Guelph.Google Scholar
  189. 188.
    Chu C-C (1982) Haploids in Plant Improvement. In: Plant Improvement and Somatic Cell Genetics ( Chu C-C. eds.) pp. 129 – 158, Academic Press.Google Scholar
  190. 189.
    Collins GB, Legg PD, Kasperbauer MJ (1974) Use of anther-derived haploids in Nicotiana. 1. Isolation of breeding lines differing in total alkaloid content. Crop Sci. 14, 77 – 80.Google Scholar
  191. 190.
    Hoffmann F, Wenzel G (1977) A single grain screening technique for breeding alkylresorcinol-poor rye. Theor. Appl. Genet. 50, 1 – 2.Google Scholar
  192. 191.
    Hoffmann F, Wenzel G (1981) Selfcompatibility in microspore- derived doubled-haploid rye lines and single grain selection for alkylresorcinol content. Theor. Appl. Genet. 60, 129 – 133.Google Scholar
  193. 192.
    Hoffmann F (1978) Mutation and selection of haploid cell culture systems of rape and rye. In: Production of Natural Compounds by Cell Culture Methods ( Alfermann AW, Reinhard E, eds.) pp. 319 – 329, Ges. S. U. mbH., Munich.Google Scholar
  194. 193.
    Schieder O (1978) Haploid from Datura innoxia as a tool for the production of homozygous lines with high content of scopolamine and for induction of mutants. In: Production of Natural Compounds by Cell Culture Methods ( Alfermann AW, Reinhard E, eds. ) pp. 330 – 336.Google Scholar
  195. 194.
    De Paepe R, Prat D, Huguet T (1982) Heritable nuclear DNA changes in doubled haploid plants obtained by pollen culture of Nicotiana sylvestris. Plant Sci. Lett. 28, 11 – 28.Google Scholar
  196. 195.
    Dhillon SS, Wernsman EA, Miksche JP (1983) Evaluation of nuclear DNA content and heterochromatin chantes in anther-derived dihaploids of tobacco (Nicotiana tabacum) cv. Cocker 139. Can. J. Genet. Cytol. 25, 169 – 173.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht 1984

Authors and Affiliations

  • Y. Yamada
    • 1
  • T. Hashimoto
    • 1
  1. 1.Research Center for Cell and Tissue CultureKyoto UniversityKyotoJapan

Personalised recommendations