Advertisement

F

  • M. Hazewinkel
Part of the Soviet Mathematical Encyclopaedia book series (ENMA, volume 4)

Keywords

Editorial Comment Free Algebra Fuchsian Group Finsler Space Fourier Integral Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Kiefer, J.: ‘Sequential minimax search for a maximum’,Proc. Amer. Math Soc.4 (1953), 502–506.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Wilde, D.J.:Optimum seeking methods, Prentice Hall, 1964.Google Scholar
  3. [3]
    Vasil’ev, F.P.:Computational methods for solving extremum problems, Moscow, 1980 (in Russian)Google Scholar
  4. [A1]
    Avriel, M.:Nonlinear programming, Prentice Hall, 1977.Google Scholar
  5. [1]
    Boncompagni, B.:Illiber Abbaci di Leonardo Pisano, Rome, 1857.Google Scholar
  6. [2]
    Vorob’ev, N.N.:Fibonacci numbers, Moscow, 1984 (in Russian).Google Scholar
  7. [3]
    Hoggatt, V.E.:Fibonacci and Lucas numbers, Univ. Santa Clara, 1969.zbMATHGoogle Scholar
  8. [4]
    Alfred, U. (or A. Brousseau):An introduction to Fibonacci discovery, San Jose, CA, 1965.Google Scholar
  9. [5]
    Fibonacci Quart. (1963-).Google Scholar
  10. [A1]
    Phillipou, A.N., Bergum, G.E. and Horodam, A.F. (Eds.):Fibonacci numbers and their applications, Reidel, 1986.Google Scholar
  11. [A1]
    Mitchell, B.:Theory of categories, Acad. Press, 1965.zbMATHGoogle Scholar
  12. [A2]
    Adamek, J.:Theory of mathematical structures, Reidel, 1983.zbMATHGoogle Scholar
  13. [A1]
    Dold, A.: ‘Partitions of unity in the theory of fixations’,Ann. of Math.78 (1963), 223–255.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [A2]
    Husemoller, D.:Fibre bundles, McGraw-Hill, 1966.zbMATHGoogle Scholar
  15. [A3]
    Serre, J.-P.: ‘Homologie singuliere des espaces fibres’,Ann. of Math.54 (1951), 425–505.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [A4]
    Spanier, E.H.:Algebraic topology, McGraw-Hill, 1966, Chapt. 2.Google Scholar
  17. [A5]
    Steenrod, N.E.:The topology of fibre bundles, Princeton Univ. Press, 1951.zbMATHGoogle Scholar
  18. [1]
    Fisher, R.A.: ‘Inverse probability’,Proc. Cambridge Philos. Soc.26 (1930), 528–535.zbMATHCrossRefGoogle Scholar
  19. [2]
    Fraser, D.A.S.: ‘The fiducial method and invariance’,Biometrika 48 (1961), 261–280.zbMATHMathSciNetGoogle Scholar
  20. [3]
    Klimov, G.P.: ‘On the fiducial approach in statistics’,Soviet Math. Dokl.11, no$12 (1970), 442–444. (Dokl. Akad Nauk SSSR 191, no. 4 (1970), 763–765 )MathSciNetGoogle Scholar
  21. [4]
    Klimov, G.P.:Invariant inferences in statistics, Moscow, 1973 (in Russian)Google Scholar
  22. [A1]
    Pedersen, J.G.: ‘Fiducial inference’,Internal Stat Rev.46 (1978), 147–170.zbMATHCrossRefGoogle Scholar
  23. [1]
    Bourbaki, N.:Elements de mathematique. Algebre, Masson, 1981, Chapt. 4–7.Google Scholar
  24. [2]
    Waerden, B.L. van der:Algebra, 1–2, Springer, 1967–1971 (translated from the German).Google Scholar
  25. [3]
    Lang, S.:Algebra, Addison-Wesley, 1974.zbMATHGoogle Scholar
  26. [4]
    Zariski, O. and Samuel, P.:Commutative algebra, 1, Springer, 1975.zbMATHGoogle Scholar
  27. [A1]
    Jacobson, N.:Lectures in abstract algebra, 1. Basic concepts, Springer, 1975.zbMATHGoogle Scholar
  28. [A2]
    Lejeune-Dirichlet, P.G.:Zahlentheorie, Chelsea, reprint, 1968.Google Scholar
  29. [1]
    Jost, R.:The general theory of quantized fields, Amer. Math. Soc., 1965.zbMATHGoogle Scholar
  30. [2]
    Simon, B.:The P(φ) 2 -Euclidean (quantum) field theory, Princeton Univ. Press, 1974.Google Scholar
  31. [3]
    Bogolyubov, N.N. and Shirkov, D.V.:Introduction to the theory of quantized fields, Interstience, 1959 (translated from the Russian).Google Scholar
  32. [4]
    Euclidean field theory. Markov’s approach, Moscow, 1978 (in Russian; translated from the English).Google Scholar
  33. [A1]
    Bongaarts, P.J.M.: ‘The mathematical structure of free quantum fields. Gaussian fields’, in E.A. de Kerf and H.G.J. Pijls (eds.):Mathematical structures in field theory. Proc. Sem. 1984–1986, CWI Amsterdam, 1987, pp. 1–50.Google Scholar
  34. [1]
    The thirteen books of Euclid’s elements, 1–3, Cambridge Univ. Press, 1926 (Translated from the Greek).Google Scholar
  35. [2]
    Kagan, V.F.:The foundations of geometry, 1, Moscow-Leningrad, 1949 (in Russian).Google Scholar
  36. [3]
    Efimov, N.V.:Hohere Geometrie, Deutsch. Verlag Wissenschaft., 1960 (translated from the Russian).Google Scholar
  37. [4]
    On the foundations of geometry. A collection of classical papers on Lobachevskii geometry, Moscow, 1956 (in Russian).Google Scholar
  38. [5]
    Rozenfel’d, B.A.:The history of non-Euclidean geometry, Moscow, 1976 (in Russian).Google Scholar
  39. [A1]
    Coxeter, H.S.M.:Non-euclidean geometry, Univ. Toronto Press, 1957.zbMATHGoogle Scholar
  40. [A2]
    Bonola, R:Non-euclidean geometry, Dover, reprint, 1955 (translated from the Italian).Google Scholar
  41. [1]
    Laptev, G.F.: ‘Differential geometry of imbedded manifolds. Group-theoretical method of differential-geometric investigation’,Trudy Moskov. Mat. Obshch.2 (1953), 275–383 (in Russian).zbMATHMathSciNetGoogle Scholar
  42. [2]
    Malakhovskii, V.S.: ‘Differential geometry of manifolds of figures and of figure pairs’,Trudy Geom. Sem. Inst. Nauchn. Inform. Akad. Nauk SSSR 2 (1969), 179–206 (in Russian).Google Scholar
  43. [3]
    Malakhovskii, V.S.: ‘Differential geometry of lines and surfaces’,J. Soviet Math.2 (1974), 304-–330. (Itogi Nauk. i Tekhn. Algebra. Topol. Geom.10 (1972), 113–1581.Google Scholar
  44. [1]
    Bourbaki, N.:Elements of mathematics. General topology, Addison-Wesley, 1966 (translated from the French).Google Scholar
  45. [2]
    Cohn, P.M.:Universal algebra, Reidel, 1981.zbMATHCrossRefGoogle Scholar
  46. [3]
    Mal’tsev, A.I.:Algebraic systems, Springer, 1973 (translated from the Russian).Google Scholar
  47. [A1]
    Kunen, K.:Set theory, North-Holland, 1980.zbMATHGoogle Scholar
  48. [1]
    Bourbaki, N.:Elements of mathematics. Commutative algebra, Addison-Wesley, 1972 (translated from the French).Google Scholar
  49. [A1]
    Bjork, J-E.:Rings of differential operators, North-Holland, 1979.Google Scholar
  50. [A2]
    Schapira, P.:Microdifferential systems in the complex domain, Springer, 1985.zbMATHCrossRefGoogle Scholar
  51. [A1]
    Adamek, J.:Theory of mathematical structures, Reidel, 1983.zbMATHGoogle Scholar
  52. [A2]
    Mitchell, B.:Theory of categories, Acad. Press, 1965.zbMATHGoogle Scholar
  53. [1]
    Godement, R:Topologie algebrique et theorie des faisceaux, Hermann, 1958.zbMATHGoogle Scholar
  54. [2]
    Wells, Jr., R. O.:Differential analysis on complex manifolds, Springer, 1980.Google Scholar
  55. [1]
    Brelot, M.:Elements de la theorie classique du potentiel, Sorbonne Univ. Centre Doc. Univ., Paris, 1959.zbMATHGoogle Scholar
  56. [2]
    Landkof, N.S.:Foundations of modern potential theory, Springer, 1972 (translated from the Russian).Google Scholar
  57. [3]
    Brelot, M.:Lectures on potential theory, Tata Inst. Fundam. Res., 1960.zbMATHGoogle Scholar
  58. [A1]
    Fuglede, B.:Finely harmonic functions, Springer, 1972.Google Scholar
  59. [A2]
    Lukes, J., Mali, J. and Zajicek, L.:Fine topology methods in real analysis and potential theory, Springer, 1986.Google Scholar
  60. [1]
    Kolmogorov, A.: ‘Zur Deutung der intuitionistischen Logik’,Math. Z.35 (1932), 58–65.zbMATHCrossRefMathSciNetGoogle Scholar
  61. [2A]
    Medvedev, Yu.T.: ‘Interpretation of logical formulas by means of finite problems’,Soviet Math. Dokl.7, no$14 (1966), 857–860. (Dokl. Akad Nauk SSSR 142, no. 5 (1962), 1015–1018 )Google Scholar
  62. [2B]
    Medvedev, Yu.T.: ‘Finite problems’,Soviet Math. Dokl.3 (1962), 227–230. (Dokl. Akad Nauk SSSR 169, no. 1 (1966), 20–23 )Google Scholar
  63. [1]
    Markov, A.A.:The calculus of finite differences, Odessa, 1910 (in Russian).Google Scholar
  64. [2]
    Berezin, I.S. and Zhidkov, N.P.:Computing methods, Pergamon, 1973 (translated from the Russian).Google Scholar
  65. [3]
    Gelfond, A.O. [A.O. Gel’fond]:Differenzenrechnung, Deutsch. Verlag Wissenschaft., 1958 (translated from the Russian).Google Scholar
  66. [4]
    Bakhvalov, N.S.:Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian)Google Scholar
  67. [A1]
    Milne-Thomson, L.M.:The calculus of finite differences, MacMillan, 1933.Google Scholar
  68. [A2]
    Samarskit, A.A.:Theorie der Differenzverfahren, Akad. Verlagsgesell. Geest u. Portig K.-D., 1984 (translated from the Russian).Google Scholar
  69. [1]
    Waerden, B.L. van der:Algebra, 1–2, Springer, 1967–1971 (translated from the German).Google Scholar
  70. [2]
    Albert, A. A.:Structure of algebras, Amer. Math. Soc., 1939.Google Scholar
  71. [A1]
    Pierce, R.:Associative algebras, Springer, 1980.Google Scholar
  72. [A2]
    Ringel, C.:Tame algebras and integral quadratic forms, Springer, 1984.Google Scholar
  73. [1]
    Kirillov, A.A.:Elements of the theory of representations, Springer, 1976 (translated from the Russian).Google Scholar
  74. [2]
    Zhelobenko, D.P.:Compact Lie groups and representations, Amer. Math. Soc., 1973 (translated from the Russian).Google Scholar
  75. [3]
    Naimark, M.A.:Theory of group representations, Springer, 1982 (translated from the Russian).Google Scholar
  76. [4]
    Dixmier, J.:C algebras, North-Holland, 1977 (translated from the French).Google Scholar
  77. [5]
    Weil, A.:l’Integration dans les groupes topologiques et ses applications, Hermann, 1940.Google Scholar
  78. [6]
    Gel’fand, I.M. and Ponomarev, V.A.: ‘Remarks on the classification of a pair of commuting linear transformations in a finite-dimensional space’,Funct. Anal Appl.3, no$14 (1969), 325–326. (Funktsional Anal i Prilozhen.3, no. 4 (1969), 81–82 )zbMATHMathSciNetGoogle Scholar
  79. [7]
    Glushkov, V.M.: ‘The structure of locally compact groups and Hilbert’s fifth problem’,Transl. Amer. Math. Soc.15 (1960), 55–93. (Uspekhi Mat. Nauk 12, no. 2 (1957), 3–41 )zbMATHGoogle Scholar
  80. [8]
    Shtern, A.I.: ‘Locally bicompact groups with finite-dimensional irreducible representations’,Math. USSR Sb.19, no$11 (1973), 85–94. (Mat. Sb.90, no. 1 (1973), 86–95 )Google Scholar
  81. [A1]
    Humphreys, J.E.:Introduction to Lie algebras and representation theory, Springer, 1972.Google Scholar
  82. [1]
    Klein, F.:Development of mathematics in the 19th century, Math. Sci. Press, 1979 (translated from the German).Google Scholar
  83. [2]
    Curtis, C.W. and Reiner, I.:Representation theory of finite groups and associative algebras, Interscience, 1962.Google Scholar
  84. [3]
    Kargapolov, M.I. and Merzlyakov, Yu.I.:Fundamentals of the theory of groups, Springer, 1979 (translated from the Rus-sian).Google Scholar
  85. [4]
    Kostrikin, A.I.: ‘Finite groups’,Itogi Nauk. Algebra 1964 (1966), 7–46 (in Russian).MathSciNetGoogle Scholar
  86. [5]
    Chunikhin, S.A. and Shemetkov, L.A.: ‘Finite groups’,Itogi Nauk. Algebra. Topol. Geom.1969 (1971), 7–70 (in Russian).Google Scholar
  87. [6]
    Mazurov, V.D.: ‘Finite groups’,Itogi Nauk. Algebra. Topol. Geom.14 (1976), 5–56 (in Russian).MathSciNetGoogle Scholar
  88. [7]
    Speiser, A.:Die Theorie der Gmppen von endlicher Ordnung, Birkhauser, 1956.Google Scholar
  89. [8]
    Wielandt, H.:Finite permutation groups, Acad. Press, 1968 (translated from the German).Google Scholar
  90. [9]
    Huppert, B.:Endliche Gruppen, 1, Springer, 1967.Google Scholar
  91. [10]
    Gorenstein, D.:Finite groups, Harper amp; Row, 1968.zbMATHGoogle Scholar
  92. [11]
    Isaacs, I.M.:Character theory of finite groups, Acad. Press, 1976.Google Scholar
  93. [12]
    Aschbacher, M.:Finite group theory, Cambridge Univ. Press, 1986.zbMATHGoogle Scholar
  94. [13]
    Gorenstein, D.:Finite simple groups: an introduction to their classification, Plenum, 1982.Google Scholar
  95. [A1]
    Hall, M.:The groups of order 2 n (n≤6), MacMillan, 1964.Google Scholar
  96. [A2]
    Kantor, W.M.: ‘Some consequences of the classification of finite simple groups’,Contempory Math.45 (1985), 159–173.MathSciNetGoogle Scholar
  97. [A3]
    Blackburn, N. and Huppert, B.:Finite groups, 1–2, Springer, 1981–1982.Google Scholar
  98. [A4]
    Suzuki, M.:Group theory, 1–2, Springer, 1986.Google Scholar
  99. [A5]
    Liebeck, M.W.: ‘The affine permutation groups of rank three’,Proc. London Math. Soc. (3)54 (1987), 477–516.zbMATHCrossRefMathSciNetGoogle Scholar
  100. [A6]
    Feit, W.: ‘Some consequences of the classification of finite simple groups’, inProc. Symp. Pure Math., Vol.37,Amer. Math. Soc., 1980, pp. 175–181.Google Scholar
  101. [1]
    Curtis, C.W. and Reiner, I.:Representation theory of finite groups and associative algebras, Interscience, 1962.Google Scholar
  102. [2]
    Kirillov, A. A.:Elements of the theory of representations, Springer, 1976 (translated from the Russian).Google Scholar
  103. [3]
    Naimark, M.A.:Theory of group representations, Springer, 1982 (translated from the Russian).Google Scholar
  104. [4]
    Lang, S.:Algebra, Addison-Wesley, 1974.Google Scholar
  105. [5]
    Serre, J.-P.:Linear representations of finite groups, Springer, 1977 (translated from the French).Google Scholar
  106. [A1]
    Curtis, C.W. and Reiner, I.:Methods of representation theory, 1–2, Wiley (Interscience), 1981–1987.Google Scholar
  107. [A2]
    Feit, W.:The representation theory of finite groups, North-Holland, 1982.Google Scholar
  108. [A3]
    Huppert, B. and Blackburn, N.:Finite groups, 2–3, Springer, 1982.Google Scholar
  109. [A4]
    Benson, D.J.:Modular representation theory: New trends and methods, Springer, 1984.Google Scholar
  110. [1]
    Manin, Yu.I.: ‘The theory of commutative formal groups over fields of finite characteristic’,Russian Math. Surveys 18 (1963), 1–80. (Uspekhi Mat. Nauk 18, no. 6 (1963), 3–90 )MathSciNetGoogle Scholar
  111. [2]
    Tate, J. and Oort, F.: ‘Group schemes of prime order’,Ann. Sci. Ecole Norm. Sup.3 (1970), 1–21.zbMATHMathSciNetGoogle Scholar
  112. [3]
    Demazure, M. and Gabriel, P.:Groupes algebriques, 1, Masson, 1970.Google Scholar
  113. [4]
    Oort, F.:Commutative group schemes, Springer, 1966.Google Scholar
  114. [5]
    Shatz, S.: ‘Cohomology of Artinian group schemes over local fields’,Ann. of Math.79 (1964), 411–449.zbMATHCrossRefMathSciNetGoogle Scholar
  115. [6]
    Mazur, B.: ‘Notes on etale cohomology of number fields’,Ann. Sci. Ecole Norm Sup.6 (1973), 521–556.zbMATHMathSciNetGoogle Scholar
  116. [7]
    Kraft, H.:Kommutative algebraische Gruppen und Ringe, Springer, 1975.Google Scholar
  117. [A1]
    Raynaud, M.: ‘Schemas en groupes de type (p,…,p)’,Bull. Soc. Math. France 102 (1974), 241–280.zbMATHMathSciNetGoogle Scholar
  118. [A2]
    Fontaine, J.-M.: ‘II n’y a pas de variety abelienne sur Z’,Invent. Math.81 (1985), 515–538.zbMATHCrossRefMathSciNetGoogle Scholar
  119. [A3]
    Faltings, G.: ‘Endlichkeitssatze fur abelsche Varietaten uber Zahlkorpern’,Invent. Math.73 (1983), 349–366. Erratum: Invent. Math75 (1984), 381.MathSciNetGoogle Scholar
  120. [A4]
    Cornell, G.:Arithmetic geometry, Springer, 1986.Google Scholar
  121. [1]
    Schiffer, M. and Spencer, D.C.:Functionals of finite Riemann surfaces, Princeton Univ. Press, 1954.Google Scholar
  122. [1]
    Arkhangel’skii, A.V. and Ponomarev, V.I.:Fundamentals of general topology: problems and exercises, Reidel, 1984 (translated from the Russian).Google Scholar
  123. [2]
    Golubitsky, M. and Guillemin, V.:Stable mappings and their singularities, Springer, 1973.Google Scholar
  124. [A1]
    Arnold, V.I., Gusein-Zade, S.M. [S.M. Khusein-Zade] and Varchenko, A.N.:Singularities of differentiable maps, Birkhauser, 1985 (translated from the Russian).Google Scholar
  125. [1]
    Kleene, S.C.: ‘Representation of events in nerve nets and finite automata’, inAutomata studies, Vol. 34, Princeton Univ. Press, 1956, pp. 3–41.Google Scholar
  126. [2]
    Yablonskii, S.V.:Introduction to discrete mathematics, Moscow, 1986 (in Russian).Google Scholar
  127. [A1]
    Ginsburg, S.:The mathematical theory of context-free languages, MacGraw-Hill, 1965.Google Scholar
  128. [A2]
    Hopcroft, J.E. and Ullman, J.D.:Introduction to automata theory, languages and computation, Addison-Wesley, 1979.Google Scholar
  129. [1]
    Kargapolov, M.I. and Merzljakov, J.I. [Yu.I. Merzlyakov]: Fundamentals of the theory of groups, Springer, 1979 (translated from the Russian).Google Scholar
  130. [1]
    Kurosh, A.G.:The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian)Google Scholar
  131. [A1]
    Coxeter, H.S.M. and Moser, W.O.J.:Generators and relations for discrete groups, Springer, 1984.Google Scholar
  132. [A2]
    Johnson, D.L.:Presentations of groups, Cambridge Univ. Press, 1988.Google Scholar
  133. [A3]
    Lyndon, R.C. and Schupp, P.E.:Combinatorial group theory, Springer, 1977.Google Scholar
  134. [A4]
    Magnus, W., Karras, A. and Solitar, D.:Combinatorial group theory: presentations of groups in terms of generators and relations, Interscience, 1966.Google Scholar
  135. [1]
    Serre, J.-P.: ‘Sut la cohomologie des varietes algebriques’,J. Math. Pures Appl 36, no. 5 (1957), 1–16.zbMATHMathSciNetGoogle Scholar
  136. [2]
    Serre, J.-P.: ‘Faisceaux algebriques coherents’,Ann. of Math.61 (1955), 197–238.zbMATHCrossRefMathSciNetGoogle Scholar
  137. [3]
    Grothendieck, A.: ‘Elements de geometrie algebrique III’,Publ. Math. IHES 17 (1963), Chapt. 3, Part 2.Google Scholar
  138. [4]
    Grothendieck, A.:Fondements de la geometrie algebrique, Seer. Math., 1962. Extracts Sem. Bourbaki 1957–1962.Google Scholar
  139. [5]
    Hartshorne, R.:Ample subvarieties of algebraic varieties, Springer, 1970.Google Scholar
  140. [6]
    Ogus, A.: ‘Local cohomological dimension of algebraic varieties’,Ann. of Math.98, no. 2 (1973), 327–365.zbMATHCrossRefMathSciNetGoogle Scholar
  141. [7]
    Shafarevich, I.R.: ‘Algebraic number fields’, inProc. internal congress mathematicians Stockholm, 1962, Inst. Mittag-Leffler, 1962, pp. 163–176.Google Scholar
  142. [8]
    Arakelov, S.Yu.: ‘Families of algebraic curves with fixed degeneracies’,Math. USSR Izv.5, no$16 (1971), 1277–1302. (Izv. Akad. Nauk SSSR Ser. Math.35, no. 6 (1971), 1269–1293 )zbMATHMathSciNetGoogle Scholar
  143. [A1]
    Faltings, G.: ‘Endlichkeitssatze fur abelsche Varietaten iiber Zahlkorpern’,Invent. Math.73 (1983), 349–366.zbMATHCrossRefMathSciNetGoogle Scholar
  144. [A2]
    Hartshorne, R.:Algebraic geometry, Springer, 1977.Google Scholar
  145. [A3]
    Mazur, B.: ‘On some of the mathematical contributions of Gerd Faltings’, inProc. internal congress mathematicians Berkeley, 1986, Amer. Math. Soc., 1987, pp. 7–12.Google Scholar
  146. [A4]
    Kleiman, S.: ‘Finiteness theorem for algebraic cycles’, inProc. internal congress mathematicians Nice, 1970, Vol. 1, Gauthier-Villars, 1971, pp. 445–449.Google Scholar
  147. [1]
    Cartan, H. and Serre, J.-P.: ‘Une theorfcme de finitude concernant les varietes analytiques compactes’,C.R Acad. Sci. Paris 237 (1953), 128–130.zbMATHMathSciNetGoogle Scholar
  148. [2]
    Andreotti, A. and Grauert, G.: ‘Theoremes de finitude pour la cohomologie des espaces complexes’,Bull. Soc. Math. France 90 (1962), 193–259.zbMATHMathSciNetGoogle Scholar
  149. [3]
    Ramis, J.P.: ‘Theoremes de separation et de finitude pour Thomologie et la cohomologie des espaces (p,q)-convexes-concaves’,Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. Ser.3 27, no. 4 (1973), 933–997.MathSciNetGoogle Scholar
  150. [4]
    Grauert, G.: ‘Ein Theorem der analytischen Garbentheorie und die Modulraume Komplexer Strukturen’,Publ. Math. IHES 5 (1960).Google Scholar
  151. [5]
    Bănică, C. and Stănăşilă, O.:Algebraic methods in the global theory of complex spaces, Wiley, 1976 (translated from the Rumanian).Google Scholar
  152. [6]
    Onishchik, A.L.: ‘Pseudoconvexity in the theory of complex spaces’,J. Soviet Math.14, no$14 (1980), 1363–1428. (Itogi Nauk. Algebra Topol. Geom.15 (1977), 93–171 )Google Scholar
  153. [7]
    Kiehl, R.: ‘Der Endlichkeitssatz fur eigentliche Abbildungen in der nichtarchimedischen Funktionentheorie’,Invent. Math.2, no. 3 (1966), 191–214.CrossRefMathSciNetGoogle Scholar
  154. [A1]
    Grauert, H. and Remmert, R.:Coherent analytic sheaves, Springer, 1984 (translated from the German).Google Scholar
  155. [1]
    Kleene, S.C.:Introduction to metamathematics, North-Holland, 1951.Google Scholar
  156. [2]
    Fraenkel, A. A. and Bar-Hillel, Y.:Foundations of set theory, North-Holland, 1958.Google Scholar
  157. [3]
    Hilbert, D. and Bernays, P.:Grundlagen der Mathematik, 1–2, Springer, 1968–1970.Google Scholar
  158. [A1]
    Troelstra, A.S.: ‘Aspects of constructive mathematics’, in J. Barwise (ed.):Handbook of Mathematical Logic, North-Holland, 1977, pp. 973–1052.CrossRefGoogle Scholar
  159. [1]
    Finsler, P.: Ueber Kurven und Flachen in allgemeinen Raumen, Gottingen, 1918. Dissertation.Google Scholar
  160. [2]
    Rund, H.: The differential geometry of Finsler spaces, Springer, 1959.Google Scholar
  161. [3]
    Asanov, G.S.: Finsler geometry, relativity and gauge theories, Reidel, 1985 (translated from the Russian).Google Scholar
  162. [4]
    Matsumoto, M.:Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, 1986.Google Scholar
  163. [A1]
    Buseman, H.:The geometry of geodesies, Acad. Press, 1955.Google Scholar
  164. [A2]
    Rinow, W.:Die innere Geometrie der metrischen Raume, Springer, 1961.Google Scholar
  165. [A3]
    Rund, H.:The differential geometry of Finsler spaces, Springer, 1959.Google Scholar
  166. [1]
    Aleksandrov, A.D.:Die innere Geometrie der konvexen Flachen, Akademie-Verlag, 1955 (translated from the Russian).Google Scholar
  167. [2]
    Aleksandrov, A.D.: ‘A theorem on triangles in a metric space and some of its applications’,Trudy Mat. Inst. Steklov.38 (1951), 5–23 (in Russian).zbMATHGoogle Scholar
  168. [3]
    Aleksandrov, A.D.: ‘Ueber eine Verallgemeinerung der Riemannsche Geometrie’,Schrift. Inst. Math. Deutsch. Akad. Wiss. 1 (1957), 33–84.Google Scholar
  169. [4]
    Berestovskii, V.N.: ‘Introduction of a Riemann structure into certain metric spaces’,Siberian Math. J.16, no$14 (1975), 499–507. (Sibirsk. Mat. Zh.16, no. 4 (1975), 651–652 )MathSciNetGoogle Scholar
  170. [5]
    Nikolaev, I.G.: ‘Space of directions at a point in a space of curvature not greater than K’,Siberian Math. J.19, no$16 (1978), 944–948. (Sibirsk. Mat. Zh.19, no. 6 (1978), 1341–1348 )zbMATHMathSciNetGoogle Scholar
  171. [6]
    Nikolaev, I.G.: ‘Solution of Plateau’s problem in spaces of curvature not greater than K’,Siberian Math. J.20, no$12 (1979), 246–251. (Sibirsk. Mat. Zh.20, no. 2 (1979), 345–353 )zbMATHMathSciNetGoogle Scholar
  172. [7]
    Reshetnyak, Yu.G.: ‘On the theory of spaces with curvature no greater than K’,Mat. Sb.52, no. 3 (1960), 789–798 (in Russian).MathSciNetGoogle Scholar
  173. [8]
    Reshetnyak, Yu.G.: ‘Inextensible mappings in a space of curvature not greater than K’,Siberian Math. J.9, no$14 (1968), 683–689. (Sibirsk. Mat. Zh.9, no. 4 (1968), 918–927 )zbMATHGoogle Scholar
  174. [9]
    Busemann, H.:The geometry of geodesies, Acad. Press, 1955.Google Scholar
  175. [10]
    Busemann, H.:Recent synthetic differential geometry, Springer, 1970.Google Scholar
  176. [11]
    Cohn-Vossen, S.: ‘Existenz kiirzester Wege’,Compos. Math.3 (1936), 441–452.zbMATHMathSciNetGoogle Scholar
  177. [12]
    Berestovskii, V.N.: ‘The finite-dimensionality problem for Busemann G-spaces’,Siberian Math. J.18, no$11 (1977), 159–161. (Sibirsk. Mat. Zh.18, no. 1 (1977), 219–221 )MathSciNetGoogle Scholar
  178. [13]
    Berestovskii, V.N.: ‘Homogeneous Busemann G-spaces’,Siberian Math. J.23, no$12 (1982), 141–150. (Sibirsk. Mat. Zh.23, no. 1 (1982), 3–15 )MathSciNetGoogle Scholar
  179. [14]
    Szenthe, J.: ‘Homogeneous spaces with intrinsic metric’,Magyar Tud Akad Mat. Fiz. Oszt. Kozl.13 (1963), 125–132 (in Hungarian).zbMATHMathSciNetGoogle Scholar
  180. [15]
    Berestovskii, V.N.: ‘Generalized symmetric spaces’,Siberian Math. J.26, no$12 (1985), 159–170. (Sibirsk. Mat. Zh.26, no. 2 (1985), 3–17 )MathSciNetGoogle Scholar
  181. [16]
    Busemann, H. and Phadke, B.B.:Spaces with distinguished geodesies, M. Dekker, 1987.Google Scholar
  182. [A1]
    Gromov, M.:Structures metriques des espaces riemanniennes, F. Nathan, 1981 (translated from the Russian).Google Scholar
  183. [1]
    Bitsadze, A.V.:Some classes of partial differential equations, Moscow, 1981 (in Russian).Google Scholar
  184. [2]
    Bers, L., John, F. and Schechter, M.:Partial differential equations, Interscience, 1964.Google Scholar
  185. [3]
    Courant, R. and Hilbert, D.:Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  186. [4]
    Miranda, C.:Partial differential equations of elliptic type, Springer, 1970 (translated from the Italian).Google Scholar
  187. [5]
    Petrowski, I.G. [I.G. Petrovskii]:Vorlesungen über partielle Differentialgeleichungen, Teubner, 1965 (translated from the Russian).Google Scholar
  188. [6]
    Bitsadze, A.V.:The equations of mathematical physics, Moscow, 1976 (in Russian).Google Scholar
  189. [7]
    Hormander, L.:Linear partial differential operators, Springer, 1976.Google Scholar
  190. [A1]
    Hormander, L.:The analysis of linear partial differential operators, 3, Springer, 1985.Google Scholar
  191. [A2]
    Gilbarg, D. and Trudinger, N.S.:Elliptic partial differential equations of second order, Springer, 1977.Google Scholar
  192. [A3]
    Ladyzhenskaya, O.A. and Ural’tseva, N.N.:Linear and quasilinear elliptic equations, Acad. Press, 1968 (translated from the Russian).Google Scholar
  193. [A4]
    Friedman, A.:Partial differential equations, Holt, Rinehart amp; Winston, 1969.zbMATHGoogle Scholar
  194. [A5]
    Friedman, A.:Partial differential equations of parabolic type, Prentice-Hall, 1964.Google Scholar
  195. [A6]
    Garabedian, P.R.:Partial differential equations, Wiley, 1964.Google Scholar
  196. [A1]
    Blaschke, W. and Leichtweiss, K.:Elementare Differential-geometrie, Springer, 1973.Google Scholar
  197. [A2]
    Hicks, N.J.:Notes on differential geometry, v. Nostrand, 1965.Google Scholar
  198. [A3]
    Kobayashi, S. and Nomizu, K.:Foundations of differential geometry, Ml, Interscience, 1963-1969.Google Scholar
  199. [A4]
    Hsiung, C.C.:A first course in differential geometry, Wiley, 1981.Google Scholar
  200. [A5]
    Millman, R.S. and Parker, G.D.:Elements of differential geometry, Prentice Hall, 1977.Google Scholar
  201. [1]
    Pontryagin, L.S.:Ordinary differential equations, Addison-Wesley, 1962 (translated from the Russian).Google Scholar
  202. [1]
    Fisher, R.A.:‘On a distribution yielding the error functions of several well-known statistics’, inProc. internal congress mathematicians Toronto 1924, Vol. 2, Univ.Google Scholar
  203. [2]
    Kendall, M.G. and Stuart, A.:The advanced theory of statistics. Distribution theory, Griffin, 1969.zbMATHGoogle Scholar
  204. [3]
    Scheffg, H.:The analysis of variance, Wiley, 1959.Google Scholar
  205. [4]
    Bol’shev, L.N. and Smirnov, N.V.:Tables of mathematical statistics, Libr. of mathematical tables, 46, Nauka, Moscow, 1983 (in Russian). Processed by L.S. Bark and E.S. Kedova.Google Scholar
  206. [1]
    Fisher, R.A.: ‘On a distribution yielding the error functions of several well-known statistics’, inProc. internal congress mathematicians Toronto 1924, Vol. 2, Univ.Google Scholar
  207. [1]
    Fitting, H.: ‘Beitrage zur Theorie der Gruppen endlicher Ordnung’,Jahresber. Deutsch. Math-Verein 48 (1938), 77–141.Google Scholar
  208. [2]
    Kurosh, A.G.:The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  209. [3]
    Gorenstein, D.:Finite groups, Harper amp; Row, 1968.zbMATHGoogle Scholar
  210. [A1]
    Huppert, B.:Endliche Gruppen, 1, Springer, 1967.Google Scholar
  211. [A2]
    Huppert, B.:Finite groups, 2–3, Springer, 1982.Google Scholar
  212. [A3]
    Robinson, D.J.S.:A course in the theory of groups, Springer, 1982.Google Scholar
  213. [1]
    Lyusternik, L.A. and Sobolev, V.I.:Elemente der Funktionalanalysis, Akad. Verlag, 1968 (translated from the Russian).Google Scholar
  214. [2]
    Krasnosel’skii, M.A.:Topological metods in the theory of nonlinear integral equations, Pergamon, 1964 (translated from the Russian).Google Scholar
  215. [3]
    Krasnosel’skii, M.A. and Zabreiko, P.P.:Geometric methods of non-linear analysis, Springer, 1983 (translated from the Rus¬sian).Google Scholar
  216. [4]
    Nemytskii, V.V.:Uspekhi Mat. Nauk 1, no. 1 (1946), 141–174.Google Scholar
  217. [5]
    Leray, J. and Schauder, J.: ‘Topology and functional equations’,Uspekhi Mat. Nauk 1, no. 3-4 (1946), 71–95 (in Russian).Google Scholar
  218. [6]
    Sadovskii, B.N.: ‘Limit-compact and condensing operators’,Russian Math. Surveys 27, no$11 (1972), 85–155. (Uspekhi Mat. Nauk 27, no. 1 (1972), 81–146 )MathSciNetGoogle Scholar
  219. [A1]
    Dugundji, J. and Granas, A.:Fixed point theory, PWN, 1982.zbMATHGoogle Scholar
  220. [A1]
    Schwerdtfeger, H.:Geometry of complex numbers, Dover, reprint, 1979.zbMATHGoogle Scholar
  221. [1]
    Golubev, V.V.:Vorlesungen fiber Differentialgleichungen im Komplexen, Deutsch. Verlag Wissenschaft., 1958 (translated from the Russian).Google Scholar
  222. [A1]
    Milne, J.S.:Etale cohomology, Princeton Univ. Press, 1980.Google Scholar
  223. [1]
    Rozenfel’d, B.A.:Non-Euclidean spaces, Moscow, 1969 (inGoogle Scholar
  224. [A1]
    Coxeter, H.S.M.: ‘The affine aspect of Yaglom’s Galilean Feuerbach’,Nieuw Archief voor Wiskunde (4)1 (1983), 212–223.zbMATHMathSciNetGoogle Scholar
  225. [A2]
    Yaglom, I.M.:A simple non-Euclidean geometry and its physical basis, Springer, 1979 (translated from the Russian).Google Scholar
  226. [1]
    Borel, A.:Linear algebraic groups, Benjamin, 1969.Google Scholar
  227. [2]
    Humphreys, J.E.:Linear algebraic groups, Springer, 1975.Google Scholar
  228. [3]
    Bernshtein, I.N., Gel’fand, I.M. and Gel’fand, S.I.: ‘Schubert cells and cohomology of the spacesG/P’,Russian Math. Surveys 28, no$13 (1973), 1–26. (Uspekhi Mat. Nauk 28, no. 3 (1973), 3–26 )Google Scholar
  229. [4]
    Kodaira, K. and Spencer, D.C.: ‘Multifoliate structures’,Ann. of Math.74 (1961), 52–100.zbMATHCrossRefMathSciNetGoogle Scholar
  230. [1]
    Whitney, H.:Geometric integration theory, Princeton Univ. Press, 1957.Google Scholar
  231. [1]
    Cartan, H. and Eilenberg, S.:Homological algebra, Princeton Univ. Press, 1956.Google Scholar
  232. [2]
    Lambek, J.:Lectures on rings and modules, Blaisdell, 1966.Google Scholar
  233. [A1]
    Bourbaki, N.:Commutative algebra, Addison-Wesley, 1964 (translated from the French).Google Scholar
  234. [1A]
    Grothendieck, A. and Deeudonné, J.: ‘Elements de geometrie algebrique’,Publ. Math. IHES 24 (1964).Google Scholar
  235. [1A]
    Grothendieck, A. and Deeudonné, J.: ‘Elements de geometrie algebrique’,Publ. Math. IHES 28 (1964).Google Scholar
  236. [2]
    Mumford, D.:Lectures on curves on an algebraic surface, Princeton Univ. Press, 1966.Google Scholar
  237. [3]
    Raynaud, M. and Gruson, L.: ‘Criteres de platitude et de projective. Techniques de ‘platification’ d’un module’,Invent. Math.13 (1971), 1–89.zbMATHCrossRefMathSciNetGoogle Scholar
  238. [A1]
    Hartshorne, R.:Algebraic geometry, Springer, 1977.Google Scholar
  239. [1]
    Whitney, H.:Geometric integration theory, Princeton Univ. Press, 1957.Google Scholar
  240. [A1]
    Hsiung, C.C.:A first course in differential geometry, Wiley, 1981.Google Scholar
  241. [1]
    Floquet, G.:Ann. Sci. Ecole Norm Sip.12, no. 2 (1883), 47–88.MathSciNetGoogle Scholar
  242. [2]
    Lyapunov, A.M.: ‘The general problem of stability of motion’, inCollected works, Vol.2, Moscow-Leningrad, 1956, pp. 7–263 (in Russian).Google Scholar
  243. [3]
    Demidovich, B.P.:Lectures on the mathematical theory of stability, Moscow, 1967 (in Russian).Google Scholar
  244. [4]
    Yakubovich, V.A. and Starzhinskii, V.M.:Linear differential equations with periodic coefficients, Wiley, 1975 (translated from the Russian).Google Scholar
  245. [5]
    Massera, J.L. and Shaffer, J.J.:Linear differential equations and function spaces, Acad. Press, 1966.Google Scholar
  246. [6]
    Erugin, N.P.:Linear systems of ordinary differential equations with periodic and quasi-periodic coefficients, Acad. Press, 1966 (translated from the Russian).Google Scholar
  247. [A1]
    Hale, J.K.:Ordinary differential equations, Wiley, 1969.Google Scholar
  248. [A2]
    Hartman, P.:Ordinary differential equations, Birkhauser, 1982.Google Scholar
  249. [A1]
    Bhatia, N.P. and Szego, G.P.:Stability theory of dynamical systems, Springer, 1970.Google Scholar
  250. [A2]
    Cornfeld, LP. [LP. Kornfel’d], Fomin, S.V. and Sinat, Ya.G.:Ergodic theory, Springer, 1982 (translated from the Russian).Google Scholar
  251. [A3]
    Palis, J. and de Melo, W.:Geometric theory of dynamical systems, Springer, 1982.Google Scholar
  252. [1]
    Ford, L.R. and Fulkerson, D.R.:Flows in networks, Princeton Univ. Press, 1962.Google Scholar
  253. A1] Bondy, J.A. and Murty, U.S.R.:Graph theory with applications, McMillan, 1976, Chapt. 11.Google Scholar
  254. [A2]
    Hu, T.C.:Integer programming and network flows, Addison-Wesley, 1969.Google Scholar
  255. [A3]
    Smith, D.K.:Network optimization practice: a computational guide, Chichester, 1982.Google Scholar
  256. [A4]
    Lawler, E.L.:Combinatorial optimization: networks and matroids, Holt, Rinehart and Winston, 1976.zbMATHGoogle Scholar
  257. [A5]
    Tarjan, R.E.:Data structures and network algorithms, SIAM, 1983.Google Scholar
  258. [A6]
    Tardos, E.: ‘A strongly polynomial minimum cost circulation algorithm’,Combinatorica 5 (1985), 247–255.zbMATHCrossRefMathSciNetGoogle Scholar
  259. [A7]
    Goldberg, A.V. and Tarjan, R.E.: ‘Finding minimum-cost circulations by successive approximation’,Math, of Operations Research (To appear).Google Scholar
  260. [A8]
    Minieka, E.:Optimization algorithms for networks and graphs, M. Dekker, 1978.Google Scholar
  261. [A9]
    Kennington, J. and Helgason, R.:Algorithms for network programming, Wiley, 1980.Google Scholar
  262. [A1]
    Spivak, M.:Calculus on manifolds, Benjamin, 1965. ReferenceszbMATHGoogle Scholar
  263. [1]
    Finikov, S.P.:Theorie der Kongruenzen, Akademie-Verlag, 1959 (translated from the Russian).Google Scholar
  264. [1]
    Fock, V.:Z Phys.75 (1932), 622–647.zbMATHCrossRefGoogle Scholar
  265. [2]
    Berezin, F.A.:The method of second quantization, Acad. Press, 1966 (translated from the Russian). Revised (augmented) second edition: Kluwer, 1989.Google Scholar
  266. [3]
    Dobrushin, R.L. and Minlos, R.A.: ‘Polynomials in linear random functions’,Russian Math. Surveys 32, no$12 (1971), 71–127. (Uspekhi Mat. Nauk 32, no. 2 (1977), 67–122 )zbMATHGoogle Scholar
  267. [4]
    Simon, B.:The P(∅) 2 -Euclidean (quantum) field theory, Princeton Univ. Press, 1974.Google Scholar
  268. [A1]
    Bogolubov, N.N., Logunov, A.A. and Todorov, I.T.:Introduction to axiomatic quantum field theory, Benjamin, 1975.Google Scholar
  269. [A2]
    Bongaarts, P.J.M.: ‘The mathematical structure of free quantum fields. Gaussian systems’, in E.A. de Kerf and H.G.J. Pijls (eds.):Proc. Seminar. Mathematical structures in field theory, CWI, Amsterdam, 1984–1986, pp. 1–50.Google Scholar
  270. [A1]
    Hartman, P.:Ordinary differential equations, Birkhauser, 1982.Google Scholar
  271. [A1]
    Berger, M.:Geometry, Springer, 1987, Chapt. 17.Google Scholar
  272. [A2]
    Coolidge, J.:Algebraic plane curves, Dover, 1959, p. 171; 180; 183; 192.Google Scholar
  273. [A1]
    Hormander, L.:The analysis of linear partial differential operators, 3, Springer, 1985.Google Scholar
  274. [A2]
    Arnold, V.I., Gusein-Zade, G.M. [G.M. Khusetn-Zade] and Varchencho, A.N.:Singularities of differentiable maps, 1, Birkhauser, 1985 (translated from the Russian).Google Scholar
  275. [1]
    Reeb, G.:Sur certains proprietes topologiques des varietes feuilletees, Hermann, 1952.Google Scholar
  276. [2]
    Reeb, G. and Schweitzer, P.A.: ‘Une theoreme de Thurston etabli au moyen de l’analyse non standard’, inDifferential topology, foliations and Gel’fand—FuJcs cohomology, Lecture notes in math., Vol. 652, Springer, 1978, p. 318.Google Scholar
  277. [3]
    Chevalley, C.:Theory of Lie groups, 1, Princeton Univ. Press, 1946.Google Scholar
  278. [4]
    Haefliger, A.: ‘Varietes feuilletees’,Ann. Scuola Norm. Sup. Pisa. Ser.3 16 (1962), 367–397.MathSciNetGoogle Scholar
  279. [5]
    Kuiper, N. (ed.):Manifolds, Amsterdam 1970, Lecture notes in math., 197, Springer, 1971.Google Scholar
  280. [6]
    Haefliger, A.: ‘Feuilletages sur les varices ouvertes’,Topology 9, no. 2 (1970), 183–194.zbMATHCrossRefMathSciNetGoogle Scholar
  281. [7]
    Novikov, S.P.: ‘Topology of foliations’,Trans. Amer. Math. Soc.14 (1967), 268–304. (Trudy Moskov. Mat. Obshch.14 (1965), 248–278 )Google Scholar
  282. [8]
    Smooth dynamical systems, Moscow, 1977 (in Russian; translated from the English).Google Scholar
  283. [9]
    Besse, A.:Manifolds all of whose geodesies are closed, Springer, 1978.Google Scholar
  284. [10]
    Thurston, W.: ‘The theory of foliations of codimension greater than one’,Comm. Math. Heh.49 (1974), 214–231.zbMATHCrossRefMathSciNetGoogle Scholar
  285. [11]
    Thurston, W.: ‘Existence of codimension one foliations’,Ann. of Math.104, no. 2 (1976), 249–268.zbMATHCrossRefMathSciNetGoogle Scholar
  286. [12]
    Lawson, H.: ‘Foliations’,Bull. Amer. Math. Soc.80 (1974), 369–418.zbMATHCrossRefMathSciNetGoogle Scholar
  287. [13]
    Lawson, H.:The quantitative theory of foliations, Amer. Math. Soc., 1977.zbMATHGoogle Scholar
  288. [14]
    Mishachev, M.M. and Eliashberg, Ya.M.: ‘Surgery on singularities of foliations’,Fund. Anal Appl.11, no$13 (1977), 197–205. (Funktsional. Anal. Prilozhen.11, no. 3 (1977), 43–53 )zbMATHGoogle Scholar
  289. [15]
    Furs, D.B.: ‘Cohomology of infinite-dimensional Lie algebras and characteristic classes of foliations’,J. Soviet Math.11, no$16 (1979), 922–980. (Itogi Nauk. Tekhn. Sovrem Probl. Mat.10 (1978), 179–285 )Google Scholar
  290. [16]
    Fuks, D.B.: ‘Foliations’, J. Soviet Math. 18, no. 2 (1982), 255–291. (Itogi Nauk. Tekhn. Algebra Topol. Geom 18(1981), 151–213)CrossRefMathSciNetGoogle Scholar
  291. [17]
    Tamura, I.: Topology of foliations, Iwanami Shoten, 1976 (in Japanese)Google Scholar
  292. [A1]
    Reinhart, B.:Differential geometry of foliations, Springer, 1983.Google Scholar
  293. [A2]
    Anosov, D.V.: ‘Geodesic flows on closed Riemannian manifolds with negative curvature’, Proc. Steklov Inst. Math.90 (1969). (Trudy Mat. Inst. Steklov.90 (1967))Google Scholar
  294. [1]
    Savelov, A.A.:Plane curves, Moscow, 1960 (in Russian).Google Scholar
  295. [2]
    Smogorzhevskii, A.S. and Stolova, E.S.:Handbook of the theory of plane curves of order three, Moscow, 1961 (in Russian).Google Scholar
  296. [A1]
    Lawrence, J.D.:A catalog of special plane curves, Dover, reprint, 1972.zbMATHGoogle Scholar
  297. [A2]
    Fladt, K.:Analytische Geometrie spezieller ebener Kurven, Akad. Verlagsgeseilschaft, 1962.zbMATHGoogle Scholar
  298. [1]
    Andronov, A.A.:Collected work, Moscow, 1956 (in Russian).Google Scholar
  299. [2]
    Babakov, I.M.:Oscillation theory, Moscow, 1965 (in Russian).Google Scholar
  300. [3]
    Butenin, N.V.:The theory of oscillations, Moscow, 1963 (in Russian).Google Scholar
  301. [4]
    Kolovskii, M.Z.:Non-linear theory of vibro-protective systems, Moscow, 1966 (in Russian).Google Scholar
  302. [5]
    Stoker, J.J.:Nonlinear vibrations in mechanical and electrical systems, Interscience, 1950.Google Scholar
  303. [6]
    Strelkov, S.P.:Introductions to oscillation theory, Moscow, 1964 (in Russian).Google Scholar
  304. [7]
    Tse, F.S., Morse, I.E. and Hinkle, R.T.:Mechanical vibrations, Allyn amp; Bacon, 1963.Google Scholar
  305. [A1]
    Andronov, A.A., Vitt, A.A. and Khatkin, A.E.:Theory of oscillators, Dover, reprint, 1987 (translated from the Russian).Google Scholar
  306. [1]
    Cohen, P.J.:Set theory and the continuum hypothesis, Benjamin, 1966.Google Scholar
  307. [2]
    Jech, T.J.:Lectures in set theory: with particular emphasis on the method of forcing, Springer, 1971.Google Scholar
  308. [3]
    Takeuti, G. and Zaring, W.M.:Axiomatic set theory, Springer, 1973.Google Scholar
  309. [4]
    Shoenfield, J.R.:Mathematical logic, Addison-Wesley, 1967.Google Scholar
  310. [5]
    Manin, Yu.I.: ‘The problem of the continuum’,J. Soviet Math.5, no$14 (1976), 451–502. (Itogi Nauk. i Tekhn. Sovrem Problemy 5 (1975), 5–73 )MathSciNetGoogle Scholar
  311. [6]
    Fitting, M.C.:Intuitionist logic model theory and forcing, North-Holland, 1969.Google Scholar
  312. [A1]
    Kunen, K.:Set theory, an introduction to independence proofs, North-Holland, 1980.Google Scholar
  313. [A2]
    Bell, J.L.:Boolean-valued models and independence proofs in set theory, Oxford Univ. Press, 1977.Google Scholar
  314. [A3]
    Burgess, J.R: ‘Forcing’, in J. Barwise (ed.):Handbook of mathematical logic, North-Holland, 1977, pp. 403–452.CrossRefGoogle Scholar
  315. [A4]
    Jech, T.:Set theory, Acad. Press, 1978.Google Scholar
  316. [1]
    Borel, A.:Linear algebraic groups, Benjamin, 1969.Google Scholar
  317. [2]
    Humphreys, J.E.:Linear algebraic groups, Springer, 1975.Google Scholar
  318. [3]
    Serre, J.-P.:Cohomologie Galoisienne, Springer, 1964.Google Scholar
  319. [4]
    Serre, J.-P.:Groupes algebrique et corps des classes, Hermann, 1959.Google Scholar
  320. [5]
    Voskresenskii, V.E.:Algebraic tori, Moscow, 1977 (in Russian).Google Scholar
  321. [6A]
    Borel, A. and Tits, J.: ‘Groupes reductifs’,Publ. Math. IHES 27 (1965), 55–150.MathSciNetGoogle Scholar
  322. [6B]
    Borel, A. and Tits, J.: ‘Complement a l’article ‘Groupes reductifs’’,Publ Math. IHES 41 (1972), 253–276.zbMATHMathSciNetGoogle Scholar
  323. [7]
    Tits, J.: ‘Classification of algebraic semi-simple groups’, inProc. Symposia Pure Math., Vol. 9, Amer. Math. Soc., 1966, pp. 33–62.Google Scholar
  324. [8]
    Springer, T.A.: ‘Reductive groups’, inProc. Symposia Pure Math., Vol. 33, Amer. Math. Soc., 1979, pp. 3–27.Google Scholar
  325. [9]
    Serre, J.-P.:Local fields, Springer, 1979 (translated from the French).Google Scholar
  326. [A1]
    Demazure, M. and Gabriel, P.:Groupes algebriques, 1, Masson, 1970.Google Scholar
  327. [A2]
    Jantzen, J.C.:Representations of algebraic groups, Acad. Press, 1987.Google Scholar
  328. [A1]
    Knus, M.-A. and Ojanguren, M.:Theorie de la descent et algebres d’Azumaya, Springer, 1974.Google Scholar
  329. [A2]
    Grothendieck, A.: ‘RevStements Stales et groupe fondamental’, inSGA 1960–1961, Exp. VI: Categories fibres etdescente, IHES, 1961.Google Scholar
  330. [A3]
    Murre, J.P.:Lectures on an introduction to Grothendieck’s theory of the fundamental group, Tata. Inst. Fund. Res., 1967, Chapt. VII.Google Scholar
  331. [A4]
    Serre, J.-P.:Cohomologie Galoisienne, Springer, 1964.Google Scholar
  332. [A5]
    Seligman, G.B.:Modular Lie algebras, Springer, 1967, Chapt. IV.zbMATHGoogle Scholar
  333. [A6]
    Serre, J.-P.:Groupes algebriques et corps de classes, Hermann, 1959, Chapt. V, Sect. 20.Google Scholar
  334. [A7]
    Jacobson, N.:Lie algebras, Dover, reprint, 1979, Chapt. X.Google Scholar
  335. [1]
    Manin, Yu.I.: ‘The theory of commutative formal groups over fields of finite characteristic’,Russian Math. Surveys 18 (1963), 1–80. (Uspekhi Mat. Nauk 18, no. 6 (1963), 3–90 )MathSciNetGoogle Scholar
  336. [2]
    Stong, F.L.E.:Notes on cobordism theory, Princeton Univ. Press, 1968.Google Scholar
  337. [3]
    Serre, J.-P.:Lie algebras and Lie groups, Benjamin, 1965 (translated from the French).Google Scholar
  338. [4]
    Hartshorne, R.:Algebraic geometry, Springer, 1977.Google Scholar
  339. [5]
    Lazard, M.:Commutative formal groups, Springer, 1975.Google Scholar
  340. [6]
    Fontaine, J.-M.:‘Groupes p-divisibles sur les corps locaux’,Asterique 47–48 (1977).Google Scholar
  341. [7]
    Mazur, B. and Tate, J.: ‘Canonical height pairings via biextensions’, in J. Tate and M. Artin (eds.):Arithmetic and geometry, Vol. 1, Birkhauser, 1983, pp. 195–237.Google Scholar
  342. [A1]
    Tate, J.T.: ‘p-divisible groups’, in T.A. Springer (ed.):Proc. Conf. local fields (Driebergen,1966), Springer, 1967, pp. 158–183.Google Scholar
  343. [A2]
    Serre, J.-P.: ‘Groupesp-divisible (d’ après J. Tate)’,Sem. Bourbaki 19, Exp. 318 (1966–1967).Google Scholar
  344. [A3]
    Hazewinkel, M.:Formal groups and applications, Acad. Press, 1978.Google Scholar
  345. [A4]
    Demazure, M. and Gabriel, P.:Groupes algebriques, 1, Masson amp; North-Holland, 1970.zbMATHGoogle Scholar
  346. [A5]
    Lubin, J. and Tate, J.: ‘Formal complex multiplication in local fields’,Ann. of Math.81 (1965), 380–387.zbMATHCrossRefMathSciNetGoogle Scholar
  347. [1]
    Gladkii, A.V.:Formal grammars and languages, Moscow, 1973 (in Russian).Google Scholar
  348. [2]
    Ginsburg, S., Greibach, S. and Hopcroft, Y.: ‘Studies in abstract families of languages’,Mem Amer. Math. Soc.87 (1969), 1–31Google Scholar
  349. [1]
    Languages and automata, Moscow, 1975 (in Russian). Collection of translations.Google Scholar
  350. [A1]
    Chomsky, N.: ‘Three models for the description of language’,IRE Trans. Information Theory IT-2 (1956), 113–124.Google Scholar
  351. [A2]
    Chomsky, N.:Syntactic structures, Mouton, 1957.Google Scholar
  352. [A3]
    Davis, M.:Computability and unsolvability, McGraw-Hill, 1958.Google Scholar
  353. [A4]
    Eilenberg, S.:Automata, languages and machines, A, Acad. Press, 1974.Google Scholar
  354. [A5]
    Hilbert, D.: ‘Mathematische Probleme. Vortrag, gehalten auf dem internationalen Mathematiker-Kongress zu Paris, 1900’, inGesammelte Abhandlungen, Vol. III, Springer, 1935.Google Scholar
  355. [A6]
    Kleene, S.C.: ‘Representation of events in nerve nets and finite automata’, inAutomata Studies, Princeton Univ. Press, 1956, pp. 3 - 42.Google Scholar
  356. [A7]
    Paz, A.:Introduction to probabilistic automata, Acad. Press, 1971.Google Scholar
  357. [A8]
    Post, E.L.: ‘A variant of a recursively unsolvable problem’,Bull. Amer. Math. Soc.52 (1946), 264–268.zbMATHCrossRefMathSciNetGoogle Scholar
  358. [A9]
    Rogers, Jr., H.:Theory of recursive functions and effective computability, McGraw-Hill, 1967.Google Scholar
  359. [A10]
    Rozenberg, G.: ‘Selective substitution grammars’,Elektronische Informationsverarbeitung und Kybernetik (EIK) 13 (1977), 455–463.zbMATHGoogle Scholar
  360. [A11]
    Salomaa, A.:Theory of automata, Pergamon Press, 1969.Google Scholar
  361. [A12]
    Salomaa, A.:Formal languages, Acad. Press, 1973.Google Scholar
  362. [A13]
    Salomaa, A.:Jewels of formal language theory, Computer Science Press, 1981.Google Scholar
  363. [A14]
    Salomaa, A. and Soittola, M.:Automata-theoretic aspects of formal power series, Springer, 1978.Google Scholar
  364. [A15]
    Thue, A.: ‘Ueber unendliche Zeichenreihen’,Skrifter utgit av Videnskapsselskapet i Kristiania I (1906), 1–22.Google Scholar
  365. [A16]
    Thue, A.:‘Probleme uber Veranderungen von Zeichenreihen nach gegebenen Regeln’,Skrifter utgit av Videnskapsselskapet i Kristiania 1.10 (1914).Google Scholar
  366. [A17]
    Turing, A.M.: ‘On computable numbers, with an application to the Entscheidungsproblem’,Proc. London Math. Soc.42 (1936), 230–265.CrossRefGoogle Scholar
  367. [1]
    Hilbert, D. and Bernays, P.:Grundlagen der Mathematik, 1–2, Springer, 1968–1970.Google Scholar
  368. [2]
    Fraenkel, A. A. and Bar-Hillel, Y.:Foundations of set theory, North-Holland, 1958.Google Scholar
  369. [3]
    Spector, C.: ‘Provable recursive functional of analysis: a consistency proof of analysis by an extension of principles formulated in current intuitionistic mathematics’, inRecursive function theory, Proc. Symp. Pure Math., Vol. 5, Amer. Math. Soc., 1962, pp. 1–27.Google Scholar
  370. [1]
    Bourbaki, N.:Elements of mathematics. Commutative algebra, Addison-Wesley, 1972 (translated from the French).Google Scholar
  371. [2]
    Zariski, O. and Samuel, P.:Commutative algebra, 2, v. Nostrand, 1958.Google Scholar
  372. [A1]
    Series formelles en variables noncommutatives et aplications, Lab. Inform, theor. et programmation, 1978.Google Scholar
  373. [A2]
    Nagata, M.:Local rings, Interscience, 1960.Google Scholar
  374. [1]
    Bary, N.K. [N.K. Bari]:A treatise on trigonometric series, Pergamon, 1964 (translated from the Russian).Google Scholar
  375. [2]
    Zygmund, A.:Trigonometric series, 1–2, Cambridge Univ. Press, 1979.Google Scholar
  376. [1]
    Hilbert, D.:Grundlagen der Geometrie, Springer, 1913.Google Scholar
  377. [2]
    Kleene, S.C.:Introduction to metamathematics, North-Holland, 1951.Google Scholar
  378. [3]
    Church, A.:Introduction to mathematical logic, 1, Princeton Univ. Press, 1956.Google Scholar
  379. [4]
    Maclane, S.: ‘Topology and logic as a source of algebra’,Bull. Amer. Math. Soc.82, no. 1 (1976), 1–40.CrossRefMathSciNetGoogle Scholar
  380. [1]
    Hilbert, D.:Grundlagen der Geometrie, Springer, 1913.Google Scholar
  381. [2]
    Gentzen, G.:Collected papers, North-Holland, 1969.Google Scholar
  382. [3]
    Gödel, K.: ‘Ueber formal unentscheidbare Satze der Principia Mathematica und verwandter Systeme I’,Monatsh. Math. Physik 38 (1931), 178–198.Google Scholar
  383. [4]
    Novikov, P.S.:Elements of mathematical logic, Oliver amp; Boyd, 1964 (translated from the Russian).Google Scholar
  384. [5]
    Kleene, S.C.:Mathematical logic, Wiley, 1967.Google Scholar
  385. [6]
    Curry, H.B.:Foundations of mathematical logic, McGraw-Hill, 1963.Google Scholar
  386. [1]
    Kleene, S.C.:Introduction to metamathematics, North-Holland, 1951.Google Scholar
  387. [1]
    Church, A.:Introduction to mathematical logic, 1, Princeton Univ. Press, 1956.Google Scholar
  388. [2]
    Hilbert, D. and Bernays, P.:Grundlagen der Mathematik, 1–2, Springer, 1968–1970.Google Scholar
  389. [3]
    Barwise, J. (ed.):Handbook of mathematical logic, North-Holland, 1971Google Scholar
  390. [A1]
    Stoy, E.:Denotations semantics, the Scott-Strachey approach to programming language theory, MIT, 1977.Google Scholar
  391. [A2]
    Bakker, J. de:Mathematical theory of program correctness, Prentice-Hall, 1980.Google Scholar
  392. [A3]
    Thomason, R.H. (Ed.):Formal philosophy, selected papers from Richard Montague, Yale Univ. Press, 1974.Google Scholar
  393. [A4]
    Janssen, T.M.V.:Foundation and applications of Montague grammar, 1: Philosophy, framework, computer science, CWI, 1986.Google Scholar
  394. [1]
    Maccracken, D.D. and Dorn, W.S.:Numerical methods with Fortran-IV programming, case studies, Wiley, 1972.Google Scholar
  395. [2]
    Grund, F.:Fortan-IV Programmierung, Deutsch. Verlag Wissenschaft., 1972.Google Scholar
  396. [3]
    Katzan, H.:Fortran 77, v. Nostrand, 1978.Google Scholar
  397. [A1]
    Backus, J.: ‘Can programming be liberated from the von Neumann style? A functional style and its algebra of programs’,Comm. ACM 21, no. 8 (1978), 613–641.zbMATHCrossRefMathSciNetGoogle Scholar
  398. [A2]
    Backus, J.: ‘The history of FORTRAN I, II and III’,ACM SIG-PLAN NOTICES A3, no. 8 (1978), 165–180.CrossRefMathSciNetGoogle Scholar
  399. [1]
    The thirteen books of Euclid’s elements’, inEuclid, Archimedes, Apollonius of Perge, Nicomachus. Great books of the Western world, Vol. 11, 1968 (Translated from the Greek).Google Scholar
  400. [2]
    Hilbert, D.:Grundlagen der Geometrie, Springer, 1913.Google Scholar
  401. [3]
    Veblen, O. and Whitehead, J.:The foundations of differential geometry, Cambridge Univ. Press, 1932.Google Scholar
  402. [4]
    On the foundations of geometry, Moscow, 1956 (in Russian).Google Scholar
  403. [5]
    Kagan, V.F.:The foundations of geometry, 1–2, Moscow-Leningrad, 1949–1956 (in Russian).Google Scholar
  404. [6]
    Kagan, V.F.:Sketches on geometry, Moscow, 1963 (in Russian).Google Scholar
  405. [7]
    Busemann, H.:The geometry of geodesies, Acad. Press, 1955.Google Scholar
  406. [8]
    Efimov, N.V.:Höhere Geometrie, Deutsch. Verlag Wissenschaft., 1960 (translated from the Russian).Google Scholar
  407. [9]
    Bachmann, F.:Aufbau der Geometrie aus dem Spiegelungsprinzip, Springer, 1973.Google Scholar
  408. [10]
    Rozenfel’d, B.A.:The history of non-Euclidean geometry, Springer, To appear (translated from the Russian).Google Scholar
  409. [11]
    Pogorelov, A.V.:Elementargeometrie, Deutsch. Verlag Wissenschaft., 1960 (translated from the Russian).Google Scholar
  410. [12]
    Choquet, G.:Geometry in a modern setting, Kershaw, 1969.Google Scholar
  411. [13]
    Doneddu, A.:Geometrie euclidienneplane, Dunod, 1965.Google Scholar
  412. [14]
    Kartészi, F.:Introduction to finite geometries, North-Holland, 1976 (translated from the Hungarian).Google Scholar
  413. [A1]
    Hilbert, D.:Foundations of geometry, Open court, Lasalle, 1971 (translated from the German).Google Scholar
  414. [A2]
    Greenberg, M.:Euclidean and non-Euclidean geometry, Freeman, 1974.Google Scholar
  415. [A3]
    Busemann, H.:Recent synthetic geometry, Springer, 1970.Google Scholar
  416. [A4]
    Riemann, B.: ‘Ueber die Hypothesen, welche der Geometrie zuGrunde liegen’, inDas Kontinuum und andere Monographien, Chelsea, reprint, 1973.Google Scholar
  417. [1]
    Harary, F.:Graph theory, Addison-Wesley, 1969.Google Scholar
  418. [2]
    Ore, O.:The four-colour problem, Acad. Press, 1967.Google Scholar
  419. [3A]
    Appel, K. and Haken, W.: ‘Every map is four-colorable I. Discharging’,Illinois J. Math.21, no. 3 (1977), 429–490.zbMATHMathSciNetGoogle Scholar
  420. [3B]
    Appel, K. and Haken, W.: ‘Every map is four-colorable II. Reducibility’,Illinois J. Math.21, no. 3 (1977), 491–567.zbMATHMathSciNetGoogle Scholar
  421. [1]
    Mandelbaum, R.: ‘Four-dimensional topology: an introduction’,Bull Amer. Math. Soc.2 (1980), 1–159.zbMATHCrossRefMathSciNetGoogle Scholar
  422. [2]
    Freedman, M.H.: ‘The topology of four-dimensional manifolds’,J. Differential Geom.17 (1982), 357–453.zbMATHMathSciNetGoogle Scholar
  423. [A1]
    Donaldson, S.K.: ‘An application of gauge theory to four-dimensional topology’,J. Differential Geom.18 (1983), 279–315.zbMATHMathSciNetGoogle Scholar
  424. [A2]
    Freed, D.S. and Uhlenbeck, K.K.:Instantons and four-manifolds, Springer, 1984.Google Scholar
  425. [A1]
    Titchmarsh, E.C.:Introduction to the theory of Fourier integrals, Oxford Univ. Press, 1948.Google Scholar
  426. [1]
    Kaczmarz, S. and Steinhaus, H.:Theorie der Orthogonalreihen, Chelsea, reprint, 1951.zbMATHGoogle Scholar
  427. [A1]
    Besicovitch, A.S.:Almost periodic functions, Cambridge Univ. Press, 1932, Chapt. I.Google Scholar
  428. [A2]
    Wiener, N.:The Fourier integral and certain of its applications, Dover, reprint, 1933, Chapt. II.Google Scholar
  429. [1]
    Titchmarsh, E.C.:Introduction to the theory of Fourier integrals, Oxford Univ. Press, 1948.Google Scholar
  430. [2]
    Bochner, S.:Lectures on Fourier integrals, Princeton Univ. Press, 1959 (translated from the German).Google Scholar
  431. [3]
    Zygmund, A.:Trigonometric series, 1–2, Cambridge Univ. Press, 1988.zbMATHGoogle Scholar
  432. [1]
    Maslov, V.P.:Theorie des perturbations et methodes asymptotiques, Dunod, 1972 (translated from the Russian).Google Scholar
  433. [2]
    Hormander, L.: ‘Fourier integral operators, I’,Acta Math.127 (1971), 79–183.CrossRefMathSciNetGoogle Scholar
  434. [3]
    Maslov, V.P. and Fedoryuk, M.V.:Semi-classical approximation in quantum mechanics, Reidel, 1981 (translated from the Russian).Google Scholar
  435. [4]
    Fedoryuk, M.V.: ‘Singularities of the kernels of Fourier integral operators and the asymptotic behaviour of the solution of the mixed problem’,Russian Math. Surveys 32, no$16 (1977), 67–120. (Uspekhi Mat. Nauk 32, no. 6 (1977), 67–115 )MathSciNetGoogle Scholar
  436. [5]
    Kucherenko, V.V.: ‘Semi-classical asymptotics of a point source function for a steady-state Schrodinger equation’,Teoret. i Mat. Fiz.1 (1969), 384–406 (in Russian).Google Scholar
  437. [6]
    Vainberg, B.R.:Asymptotic methods in the equations of mathematical physics, Gordon amp; Breach, 1988 (translated from the Russian).Google Scholar
  438. [7]
    Vainberg, B.R.: ‘A complete asymptotic expansion of the spectral function of second order elliptic operators in Rn’,Math. USSR-Sb.51, no$11 (1985), 191–206. (Mat. Sb.123, no. 2 (1984), 195–211 )MathSciNetGoogle Scholar
  439. [8]
    Kucherenko, V.V.: ‘Asymptotic solution of the Cauchy problem for equations with complex characteristics’,J. Soviet Math.13, no$11 (1980), 24–118. (Itogi Nauk. i Tekhn. Sovr. Probl. Mat.8 (1977), 41–136 )Google Scholar
  440. [9]
    Maslov, V.P.:Operator methods, Moscow, 1976 (in Russian).Google Scholar
  441. [10]
    Mishchenko, A.S., Sternin, B.Yu. and Shatalov, V.E.:Lagrangian manifolds and the method of the canonical operator, Moscow, 1978 (in Russian).Google Scholar
  442. [11]
    Leray, J.:Lagrangian analysis and quantum mechanics, MIT, 1981 (translated from the French).Google Scholar
  443. [12]
    Egorov, Yu.B.: ‘Subelliptic operators’,Russian Math. Surveys 30, no$12 (1975), 59–118. (Uspekhi Mat. Nauk 30, no. 2 (1975), 57–114 )Google Scholar
  444. [13]
    Shubin, M.A.:Pseudo differential operators and spectral theory, Springer, 1987 (translated from the Russian).Google Scholar
  445. [14]
    Treves, F.:Introduction to pseudodifferential and Fourier integral operators, Plenum, 1980.Google Scholar
  446. [A1]
    Hormander, L.:The analysis of linear partial differential operators, 4. Fourier integral operators, Springer, 1985.Google Scholar
  447. [A2]
    Lax, P.D.: ‘Asymptotic solutions of oscillatory initial value problems’,Duke Math. J.24 (1957), 627–646.zbMATHCrossRefMathSciNetGoogle Scholar
  448. [A3]
    Arnol’d, V.I.: ‘Characteristic class entering in quantization conditions’,Funct. Anal. Appl.1 (1967), 1–13. (Funkts. Anal. iPrilozhen.1 (1967), 1–14 )zbMATHGoogle Scholar
  449. [A4]
    Duistermaat, J.J. and Hormander, L.: ‘Fourier integral operators II’,Acta Math.128 (1972), 183–269.zbMATHCrossRefMathSciNetGoogle Scholar
  450. [A5]
    Arnol’d, V.I.: ‘Integrals of rapidly oscillating functions and singularities of projections of Lagrangian manifolds’,Funct. Anal. Appl.6 (1972), 222–224. (Funkts. Anal, i Prilozhen.6 (1972), 61–62 )Google Scholar
  451. [A6]
    Duistermaat, J.J.: ‘Oscillatory integrals, Lagrange immersions and unfoldings of singularities’,Comm. Pure Appl. Math.27 (1974), 207–281.zbMATHCrossRefMathSciNetGoogle Scholar
  452. [A7]
    Chazarain, J.: ‘Formules de Poisson pour les varietes riemanniennes’,Invent. Math.24 (1974), 65–82.zbMATHCrossRefMathSciNetGoogle Scholar
  453. [A8]
    Duistermaat, J.J. and Guillemin, V.W.: ‘The spectrum of positive elliptic operators and periodic characteristics’,Invent. Math.29 (1975), 39–79.zbMATHCrossRefMathSciNetGoogle Scholar
  454. [A9]
    Melin, A. and Sjostrand, J.: ‘Fourier integral operators with complex phase functions and parametrix for an interior boundary value problem’,Comm. Part. Diff. Equations 1 (1976), 313–400.zbMATHCrossRefMathSciNetGoogle Scholar
  455. [A10]
    Taylor, M.E.:Pseudodifferential operators, Princeton Univ. Press, 1981.Google Scholar
  456. [A11]
    Petersen, B.E.:Introduction to the Fourier transform and pseudo-differential operators, Pitman, 1983.Google Scholar
  457. [A12]
    Chazarain, J. and Piriou, A.:Introduction to the theory of partial differential equations, North-Holland, 1982.Google Scholar
  458. [A13]
    Duistermaat, J.J.:Fourier integral operators, Courant Inst. Math., 1973.zbMATHGoogle Scholar
  459. [A14]
    Dieudonné, J.:Elements d’analyse, 7–8, Gauthier-Villars, 1978.Google Scholar
  460. [1]
    Bitsadze, A.V.:The equations of mathematical physics, Moscow, 1976 (in Russian).Google Scholar
  461. [2]
    Miller, U.: Symmetry and separation of variables, Addison-Wesley, 1977.Google Scholar
  462. [A1]
    Bluman, G.W. and Cole, G.D.:Similarity methods for differential equations, Springer, 1974.Google Scholar
  463. [A1]
    Sedov, L.I.:Similarity and dimensional methods in mechanics, Infosearch, 1959.Google Scholar
  464. [A2]
    Birkhoff, G.:Hydrodynamics, Princeton Univ. Press, 1960.Google Scholar
  465. [1]
    Bary, N.K. [N.K. Bari]:A treatise on trigonometric series, Pergamon, 1964 (translated from the Russian).Google Scholar
  466. [2]
    Zygmund, A.:Trigonometric series, 1–2, Cambridge Univ. Press, 1979.Google Scholar
  467. [3]
    Hardy, G.H. and Rogosinsky, W.W.:Fourier series, Cambridge Univ. Press, 1965.Google Scholar
  468. [4]
    Luzin, N.N.:The integral and trigonometric series, Moscow-Leningrad, 1951 (in Russian).Google Scholar
  469. [5]
    Lebesgue, H.:Legons sur les series trigonometriques, Gauthier- Villars, 1906.Google Scholar
  470. [6]
    Paplauskas, A.B.:Trigonometric series from Euler to Lebesgue, Moscow, 1966 (in Russian).Google Scholar
  471. [7]
    Ul’yanov, P.L.: ‘Solved and unsolved problems in the theory of trigonometric and orthogonal series’,Russian Math. Surveys 19, no$11 (1964), 1–62. (Uspekhi Mat. Nauk 19, no. 1 (1964), 3–69 )MathSciNetGoogle Scholar
  472. [8]
    Alimov, Sh.A., Il’in, V.A. and Nikishin, E.M.: ‘Convergence problems of multiple trigonometric series and spectral decomposition. I’,Russian Math. Surveys 31, no$16 (1976), 29–86. (Uspekhi Mat. Nauk 31, no. 6 (1976), 28–83 )zbMATHMathSciNetGoogle Scholar
  473. [9]
    Salem, R.: ‘On a theorem of Zygmund’,Duke Math. J.10 (1943), 23–31.zbMATHCrossRefMathSciNetGoogle Scholar
  474. [10]
    Bochkarev, S.V.: ‘On a problem of Zygmund’,Math. USSR Izv.7, no$13 (1973), 629–637. (Izv. Akad. Nauk SSSR 37 (1973), 630–638 )Google Scholar
  475. [11]
    Stechkin, S.B.: ‘On absolute convergence of orthogonal series’,Dokl Akad Nauk SSSR 102 (1955), 37–40 (in Russian).zbMATHMathSciNetGoogle Scholar
  476. [12]
    Kolmogoroff, A.N. [A.N. Kolmogorov] and Menschoff, D.E. [D.E. Menshov]: ‘Sur la convergence des series de fonctions orthogonales’,Math. Z.26 (1927), 432–441.zbMATHCrossRefMathSciNetGoogle Scholar
  477. [13]
    Zahorski, Z.: ‘Une serie de Fourier permutee d’une fonction de classe L2 divergente partout’,C.R Acad. Sci. Paris 251 (1960), 501–503.zbMATHMathSciNetGoogle Scholar
  478. [14]
    Ul’yanov, P.L.: ‘Divergent Fourier series’,Russian Math. Surveys 16, no$13 (1961), 1–75. (Uspekhi Mat. Nauk 16, no. 3 (1961), 61–142 )Google Scholar
  479. [15]
    Olevskii, A.M.: ‘Divergent Fourier series for continuous functions’,Soviet Math. Dokl.2 (1961), 1382–1386. (Dokl. Akad. Nauk SSSR 141 (1961), 28–31 )MathSciNetGoogle Scholar
  480. [16]
    Fefferman, C.: ‘On the divergence of multiple Fourier series’,Bull. Amer. Math. Soc.77 (1971), 191–195.zbMATHCrossRefMathSciNetGoogle Scholar
  481. [A1]
    Edwards, R.E.:Fourier series. A modern introduction, 1–2, Springer, 1979–1982.Google Scholar
  482. [A2]
    Kahane, J.-P.:Series de Fourier absolument convergentes, Springer, 1970.Google Scholar
  483. [A3]
    Katznelson, Y.:An introduction to harmonic analysis, Wiley, 1968.Google Scholar
  484. [A4]
    Dym, H. and Mckean, H.P.:Fourier series and integrals, Acad. Press, 1972.zbMATHGoogle Scholar
  485. [A5]
    Stein, E.M. and Weiss, G.:Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971.Google Scholar
  486. [1]
    Szegö, G.:Orthogonal polynomials, Amer. Math. Soc., 1975.zbMATHGoogle Scholar
  487. [2]
    Geronimus, Ya.L.:Polynomials orthogonal on a circle and interval, Pergamon, 1960 (translated from the Russian).Google Scholar
  488. [3]
    Suetin, P.K.:Classical orthogonal polynomials, Moscow, 1979 (in Russian).Google Scholar
  489. [A1]
    Freud, G.:Orthogonal polynomials, Pergamon, 1971 (translated from the German).Google Scholar
  490. [A2]
    Nevai, P. and Freud, G.: ‘Orthogonal polynomials and Christoffel functions (A case study)’,J. Approx. Theory 48 (1986), 3–167.zbMATHCrossRefGoogle Scholar
  491. [1]
    Levitan, B.M.:Almost-periodic functions, Moscow, 1953 (in Russian).Google Scholar
  492. [2]
    Kuptsov, N.P.: ‘Direct and converse theorems of approximation theory and semigroups of operators’,Russian Math. Surveys 23, no. 4 (1968), 115–177. (Uspekhi Mat. Nauk 23, no. 4 (142) (1968), 117–178 )Google Scholar
  493. [3]
    Gaposhkin, V.F.: ‘Lacunary series and independent functions’,Russian Math. Surveys 21, no. 6 (1966), 1–82. (Uspekhi Mat. Nauk 21, no. 6 (132) (1966), 3–82 )Google Scholar
  494. [A1]
    Corduneanu, C.:Almost periodic functions, Wiley, 1968.zbMATHGoogle Scholar
  495. [1]
    Zygmund, A.:Trigonometric series, 1, Cambridge Univ. Press,Google Scholar
  496. [1]
    Bochner, S.:Lectures on Fourier integrals, Princeton Univ. Press, 1959 (translated from the German).zbMATHGoogle Scholar
  497. [2]
    Zygmund, A.:Trigonometric series, 2, Cambridge Univ. Press, 1988.zbMATHGoogle Scholar
  498. [3]
    Gnedenko, B.V.:The theory of probability, Chelsea, reprint, 1962 (translated from the Russian).Google Scholar
  499. [1]
    Titchmarsh, E.C.:Introduction to the theory of Fourier integrals, Oxford Univ. Press, 1948.Google Scholar
  500. [2]
    Zygmund, A.:Trigonometric series, 2, Cambridge Univ. Press, 1988.zbMATHGoogle Scholar
  501. [3]
    Stein, E.M. and Weiss, G.:Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971.Google Scholar
  502. [A1]
    Rudin, W.:Functional analysis, McGraw-Hill, 1973.zbMATHGoogle Scholar
  503. [1]
    Cooley, J. and Tukey, J.: ‘An algorithm for the machine calculation of complex Fourier series’,Math. Comp.19 (1965), 297–301.zbMATHCrossRefMathSciNetGoogle Scholar
  504. [2]
    Runge, C.Z.:Math. Phys.48 (1903), 443.Google Scholar
  505. [A1]
    Froberg, C.E.:Introduction to numerical analysis, Benjamin/Cummings, 1985.Google Scholar
  506. [A2]
    Brigham, E.D.:The fast Fourier transform, Prentice-Hall, 1974.zbMATHGoogle Scholar
  507. [A3]
    Ramirez, R.W.:The FFT fundamentals and concepts, Prentice-Hall, 1985.Google Scholar
  508. [A4]
    Elliot, D.F. and Rao, K.R.:Fast transforms: algorithms, analysis, applications, Acad. Press, 1982.Google Scholar
  509. [1]
    Vladimirov, V.S.:Generalized functions in mathematical physics, Mir, 1979 (translated from the Russian).Google Scholar
  510. [2]
    Gel’fand, I.M. and Shilov, G.E.:Generalized functions, 1, Acad. Press, 1964 (translated from the Russian).Google Scholar
  511. [3]
    Schwartz, L.:Theorie des distributions, 2, Hermann, 1951.Google Scholar
  512. [4]
    Antosik, P., Mikusinski, J. and Sikorski, R.:Theory of distributions: the sequential approach, Elsevier, 1973.Google Scholar
  513. [5]
    Hormander, L.:The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  514. [A1]
    Yosida, K.:Functional analysis, Springer, 1980.Google Scholar
  515. [A2]
    Jones, D.S.:The theory of generalized functions, Cambridge Univ. Press, 1982.CrossRefGoogle Scholar
  516. [A1]
    Mandelbrot, B.B.:Form, chance and dimension, Freeman, 1977.Google Scholar
  517. [A1]
    Mandelbrot, B.B.:The fractal geometry of nature, Freeman, 1983.Google Scholar
  518. [A2]
    Falconer, K.J.:The geometry of fractal sets, Cambridge Univ. Press, 1985.zbMATHCrossRefGoogle Scholar
  519. [A3]
    Peitgen, H.-O. and Richter, P.H.:The beauty of fractals, Springer, 1986.Google Scholar
  520. [A4]
    Mandelbrot, B.B.:Fractals and multlfractals. Noise, turbulence and galaxies, Springer, 1988.Google Scholar
  521. [A5]
    Pietronero, L., Evertsz, C. and Siebesma, A.P.: ‘Fractal and multifractal structures in kinetic critical phenomena’, in S. Albeverio, Ph. Blanchard, M. Hazewinkel and L. Streit (eds.):Stochastic processes in physics and engineering, Reidel, 1988, pp. 253–278.CrossRefGoogle Scholar
  522. [A6]
    Pietronero, L. and Tosatti, E. (Eds.):Fractals in physics, North-Holland, 1986.Google Scholar
  523. [A1]
    Hewitt, E. and Stromberg, K.:Real and abstract analysis, Springer, 1965.Google Scholar
  524. [A2]
    Rudin, W.:Principles of mathematical analysis, McGraw-Hill, 1953.Google Scholar
  525. [1]
    Zariski, O. and Samuel, P.:Commutative algebra, 1, Springer, 1975.Google Scholar
  526. [2]
    Bourbaki, N.:Elements of mathematics. Commutative algebra, Addison-Wesley, 1972 (translated from the French).Google Scholar
  527. [1]
    Hardy, G.H., Littlewood, J.E. and Pólya, G.:Inequalities, Cambridge Univ. Press, 1934.Google Scholar
  528. [2]
    Zygmund, A.:Trigonometric series, 1, Cambridge Univ. Press, 1979.Google Scholar
  529. [3]
    Hille, E. and Phillips, R.:Functional analysis and semi-groups, Amer. Math. Soc., 1957.Google Scholar
  530. [4]
    Dzhrbashyan, M.M.:Integral transforms and representation of functions in a complex domain, Moscow, 1966 (in Russian).Google Scholar
  531. [1]
    Priwalow, I.I. [I.I. Privalov]:Einfuhrung in die Funktionentheorie, 1–3, Teubner, 1958–1959 (translated from the Russian).Google Scholar
  532. [2]
    Shabat, B.V.:Introduction to complex analysis, 1–2, Moscow, 1976 (in Russian).Google Scholar
  533. [3]
    Stoilow, S.:The theory of functions of a complex variable, 1, Moscow, 1962. (in Russian; translated from the Roumanian).Google Scholar
  534. [4]
    Ford, L.R.: Automorphic functions, Chelsea, reprint, 1951.Google Scholar
  535. [A1]
    Rudin, W.:Function theory in the unit ball of CN, Springer, 1980.Google Scholar
  536. [A2]
    Nehari, Z.:Conformal mapping, Dover, reprint, 1975.Google Scholar
  537. [A3]
    Schwerdtfeger, H.:Geometry of complex numbers, Dover, reprint, 1979.zbMATHGoogle Scholar
  538. [A4]
    Markushevich, A.I.:Theory of functions of a complex variable, 1, Chelsea, 1977 (translated from the Russian).Google Scholar
  539. [1]
    Krein, S.G. (Ed.):Functional analysis, Wolters-Noordhoff, 1972 (translated from the Russian).Google Scholar
  540. [2]
    Krein, S.G.:Linear differential equations in a Banach space, Amer. Math. Soc., 1971 (translated from the Russian).Google Scholar
  541. [3]
    Seeley, R.T.: ‘Complex powers of elliptic operators’, inProc. Symp. Pure Math., Vol. 10, Amer. Math. Soc., 1967, pp. 288- 307.Google Scholar
  542. [A1]
    Hille, E. and Phillips, R.:Functional analysis and semi-groups, Amer. Math. Soc., 1957.Google Scholar
  543. [1]
    Yanenko, N.N.:The method of fractional steps: solution of problems of mathematical physics in several variables, Springer, 1971 (translated from the Russian).Google Scholar
  544. [2]
    Samarskii, A.A.:Introduction to the theory of finite-difference schemes, Moscow, 1971 (in Russian).Google Scholar
  545. [A1]
    Gourlay, A.R.: ‘Splitting methods for time-dependent partial differential equations’, inThe state-of-the-art in numerical analysis. Proc. Conf. Univ. York,1976, Acad. Press, 1977, pp. 757–796.Google Scholar
  546. [A2]
    Twizell, E.H.:Computational methods for partial differential equations, E. Horwood, 1984.Google Scholar
  547. [1]
    Lambek, J.:Lectures on rings and modules, Blaisdell, 1966.Google Scholar
  548. [2]
    Elizarov, V.P.: ‘Quotient rings’,Algebra and Logic 8, no$14 (1969), 219–243. (Algebra i Logika 8, no. 4 (1969), 381–424 )zbMATHCrossRefMathSciNetGoogle Scholar
  549. [3]
    Stenstrom, B.:Rings of quotients, Springer, 1975.Google Scholar
  550. [A1]
    Cherepanov, G.P.:Mechanics of brittle fracture, McGraw-Hill, 1979 (translated from the Russian).Google Scholar
  551. [A2]
    Fabrikant, V.I.:Applications of potential theory in mechanics, Kluwer, 1989.Google Scholar
  552. [A3]
    Muskhelishvili, N.I.:Some basic problems of the mathematical theory of elasticity, Noordhoff, 1953 (translated from the Russian).Google Scholar
  553. [A4]
    Kassir, M.K. and Sih, G.:Three-dimensional crack problems, Noordhoff, 1975.Google Scholar
  554. [A5]
    Panasyuk, V.V., Stadnik, M.M. and Silovanyuk, V.P.:Stress concentration in three-dimensional bodies with thin inclusions, Kiev, 1986 (in Russian).Google Scholar
  555. [A6]
    Sih, G.C. and Liebowitz, H.:Mathematical theories of brittle fracture, 2. Fracture, Acad. Press, 1968.Google Scholar
  556. [A7]
    Sneddon, I.N. and Lowengrub, M.:Crack problems in the classical theory of elasticity, Wiley, 1969.Google Scholar
  557. [A1]
    Steenrod, N.:The topology of fibre bundles, Princeton Univ. Press, 1951.Google Scholar
  558. [1]
    Franklin, P.: ‘A set of continuous orthogonal functions’,Math. Ann.100 (1928), 522–529.zbMATHCrossRefMathSciNetGoogle Scholar
  559. [2]
    Kaczmarz, S. and Steinhaus, H.:Theorie der Orthogonalreihen, Chelsea, reprint, 1951.zbMATHGoogle Scholar
  560. [3]
    Ciesielski, Z.: ‘Properties of the orthogonal Franklin system’,Studio Math.23, no. 2 (1963), 141–157.zbMATHMathSciNetGoogle Scholar
  561. [4]
    Ciesielski, Z.: ‘A construction of a basis in C(1)(I2)’,Studia Math.33, no. 2 (1969), 243–247.zbMATHMathSciNetGoogle Scholar
  562. [5]
    Bochkarev, S.V.: ‘Existence of a basis in the space of functions analytic in the disk, and some properties of Franklin’s system’,Math. USSR-Sb.24, no$11 (1974), 1–16. (Mat. Sb.95, no. 1 (1974), 3–18 )Google Scholar
  563. [6]
    Banach, S.S.:Theorie des operations lineaires, Chelsea, reprint, 1955zbMATHGoogle Scholar
  564. [1]
    Berezin, I.S. and Zhidkov, N.P.:Computing methods, 1, Pergamon, 1973 (translated from the Russian).Google Scholar
  565. [2]
    Korn, G.A. and Korn, T.M.:Mathematical handbook for scientists and engineers, McGraw-Hill, 1968.Google Scholar
  566. [A1]
    Steffensen, J.F.:Interpolation, Chelsea, reprint, 1950.zbMATHGoogle Scholar
  567. [1]
    Frattini, G.: ‘Intorno alia generazione dei gruppi di operazioni’, Atti Accad Lincei, Rend (IV)1 (1885), 281–285.Google Scholar
  568. [2]
    Kurosh, A.G.:The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  569. [A1]
    Berger, M.S.:Nonlinearity and functional analysis, Acad. Press, 1977.Google Scholar
  570. [1]
    Dugac, P.:Elements d’analyse de Karl Weierstrass, Paris, 1972.Google Scholar
  571. [2]
    Stolz, O.:Grundziige der Differential- und Integralrechnung, 1, Teubner, 1893.Google Scholar
  572. [3]
    Young, W.:The fundamental theorems of the differential calculus, Cambridge Univ. Press, 1910.zbMATHGoogle Scholar
  573. [4]
    Frechet, M.: ‘Sur la notion de differentielle’,C.R. Acad. Sci. Paris 152 (1911), 845–847; 1050–1051.zbMATHGoogle Scholar
  574. [5]
    Frechet, M.: ‘Sur la notion de differentielle totale’,Nouvelles Ann. Math. Ser.4 12 (1912), 385–403; 433–449.Google Scholar
  575. [6]
    Kolmogorov, A.N. and Fomin, S.V.:Elements of the theory offunctions and functional analysis, Graylock, 1957-1961 (translated from the Russian).Google Scholar
  576. [7]
    Alekseev, V.M., Tikhomirov, V.M. and Fomin, S.V.:Optimal control, Consultants bureau, 1987 (translated from the Russian).Google Scholar
  577. [1]
    Bourbaki, N.:Topological vector spaces, Springer, 1987 (translated from the French).Google Scholar
  578. [2]
    Robertson, A. and Robertson, W.:Topological vector spaces, Cambridge Univ. Press, 1973.zbMATHGoogle Scholar
  579. [A1]
    Schaefer, H.H.:Topological vector spaces, Macmillan, 1966.Google Scholar
  580. [A2]
    Kelley, J.L. and Namioka, I.:Linear topological spaces, Springer, 1963.Google Scholar
  581. [A3]
    Kothe, G.:Topological vector spaces, I, Springer,Google Scholar
  582. [1]
    Frechet, M.:Ann. Soc. Polon. Math.3 (1924), 4–19.Google Scholar
  583. [2]
    Frechet, M.: ‘Sur quelques points du calcul fonctionnel’,Rend. Circolo Mat. Palermo 74 (1906), 1–74.CrossRefGoogle Scholar
  584. [1]
    Frechet, M.: ‘Sur les fonctionelles bilineaires’,Trans. Amer. Math. Soc.16, no. 3 (1915), 215–234.zbMATHCrossRefMathSciNetGoogle Scholar
  585. [2]
    Morse, M. and Transue, W.: ‘The Frechet variation and the convergence of multiple Fourier series’,Proc. Nat. Acad. Sci. USA 35, no. 7 (1949), 395–399.zbMATHCrossRefMathSciNetGoogle Scholar
  586. [1]
    Smirnov, V.I.:A course of higher mathematics, 4, Addison-Wesley, 1964, Chapt. 1 (translated from the Russian).Google Scholar
  587. [2]
    Wladimirow, W.S. [V.S. Vladimirov] and Vladimirov, V.S.:Equations of mathematical physics, Mir, 1984 (translated from the Russian).Google Scholar
  588. [3]
    Kantorovich, L.V. and Akilov, G.P.:Functional analysis in normed spaces, Pergamon, 1964 (translated from the Russian).Google Scholar
  589. [A1]
    Gohberg, I. [I. Gokhberg] and Goldberg, S.:Basic operator theory, Birkhauser, 1977.Google Scholar
  590. [A2]
    Taylor, A.E. and Lay, D.C.:Introduction to functional analysis, Wiley, 1980.Google Scholar
  591. [1]
    Smirnov, V.I.:A course of higher mathematics, 4, Addison-Wesley, 1964, Chapt. 1 (translated from the Russian).Google Scholar
  592. [2]
    Goursat, E.:Cours d’analyse mathematique, 3, Gauthier-Villars, 1923, p. Chapt. 2.Google Scholar
  593. [3]
    Petrovskii, I.G.:Lectures on the theory of integral equations, Graylock, 1957 (translated from the Russian).Google Scholar
  594. [4]
    Lovitt, W.V.:Linear integral equations, Dover, reprint, 1950.Google Scholar
  595. [5]
    Mikhlin, S.G.:Linear integral equations, Hindushtan Publ. Comp., Delhi, 1960 (translated from the Russian).Google Scholar
  596. [6]
    Kantorovich, L.V. and Krylov, V.I.:Approximate methods of higher analysis, Noordhoff, 1958 (translated from the Rus-sian).Google Scholar
  597. [7]
    Mikhlin, S.G.:Dokl. Akad. Nauk SSSR 42, no. 9 (1944), 387–390.Google Scholar
  598. [8]
    Riesz, F.: ‘Ueber lineare Funktionalgleichungen’,Acta Math.41 (1918), 71–98.CrossRefMathSciNetGoogle Scholar
  599. [9]
    Carleman, T.: ‘Zur Theorie der linearen Integralgleichungen’,Math. Z.9 (1921), 196–217.CrossRefMathSciNetGoogle Scholar
  600. [10]
    Schauder, J.:Studia Math.2 (1930), 183–196.Google Scholar
  601. [11]
    Smithies, F.: ‘The Fredholm theory of integral equations’,Duke Math. J.8 (1941), 107–130.CrossRefMathSciNetGoogle Scholar
  602. [A1]
    Hochstadt, H.:Integral equations, Wiley, 1973.Google Scholar
  603. [A2]
    Jorgens, K.:Lineare Integraloperatoren, Teubner, 1970.Google Scholar
  604. [A3]
    Nashed, M.Z.:Generalized inverses and applications, Acad. Press, 1976.Google Scholar
  605. [A4]
    Suzuki, N.: ‘On the convergence of Neumann series in Banach space’,Math. Ann.220 (1976), 143–146.zbMATHCrossRefMathSciNetGoogle Scholar
  606. [A5]
    Widom, H.:Lectures on integral equations, American Book Company, 1969.Google Scholar
  607. [A6]
    Gohberg, I. and Goldberg, S.:Basic operator theory, Birkhauser, 1981.Google Scholar
  608. [A7]
    Zabretko, P.P., et al.:Integral equations—a reference text, Noordhoff, 1958 (translated from the Russian).Google Scholar
  609. [A1]
    Anselone, P.M.:Collectively compact operator approximation theory and applications to integral equations, Prentice-Hall, 1971.Google Scholar
  610. [A2]
    Atkinson, K.E.:A survey of numerical methods for the solution of Fredholm integral equations of the second kind, SIAM, 1976.zbMATHGoogle Scholar
  611. [A3]
    Baker, C.T.H.:The numerical treatment of integral equations, Clarendon Press, 1977.Google Scholar
  612. [A4]
    Delves, L.M. and Mohamed, J.L.:Computational methods for integral equations, Cambridge Univ. Press, 1985.zbMATHCrossRefGoogle Scholar
  613. [A5]
    Nashed, M.Z.: Generalized inverses and applications, Acad. Press, 1976.Google Scholar
  614. [A6]
    Engl, H.W. and Groetsch, C.W. (Eds.):Inverse and ill-posed problems, Acad. Press, 1987.zbMATHGoogle Scholar
  615. [A7]
    Groetsch, C.W.:The theory of Tikhonov regularization for Fredholm equations of the first kind, Pitman, 1984.Google Scholar
  616. [A8]
    Natterer, F.: ‘The finite element method for ill-posed problems’,RAIRO Anal. Numer.11 (1977), 271–278.zbMATHMathSciNetGoogle Scholar
  617. [A9]
    Kantorovich, L.V. and Krylov, V.I.:Approximate methods of higher analysis, Noordhoff, 1958 (translated from the Russian).Google Scholar
  618. [A10]
    Gohberg, I.C. [I.C. Gokhberg] and Feld’man, I.A.:Convolution equations and projection methods for their solution, Amer. Math. Soc., 1974 (translated from the Russian).Google Scholar
  619. [A11]
    Zabretko, P.P., et al.:Integral equations—a reference text, Noordhoff, 1975 (translated from the Russian).Google Scholar
  620. [1]
    Smirnov, V.I.:A course of higher mathematics, 4, Addison-Wesley, 1964, Chapt. 1 (translated from the Russian).Google Scholar
  621. [1]
    Grothendieck, A.: ‘La theorie de Fredholm’,Bull. Amer. Math. Soc.84 (1956), 319–384.zbMATHMathSciNetGoogle Scholar
  622. [2]
    Grothendieck, A.: ‘Produits tensoriels topologiques et espaces nucleases’,Mem Amer. Math. Soc.5 (1955).Google Scholar
  623. [1]
    Krein, M.G.:Linear equations in a Banach space, Birkhauser, 1982 (translated from the Russian).Google Scholar
  624. [A1]
    Booss, B.:Topologie und Analysis, Einfuhrung in die Atiyah—Singer Indexformel, Springer, 1977.Google Scholar
  625. [A2]
    Conway, J.B.:A course in functional analysis, Springer, 1985.Google Scholar
  626. [A3]
    Gohberg, I.C. [I.C. Gokhberg] and Krein, M.G.: ‘The basic propositions on defect numbers, root numbers and indices of linear operators’,Transl. Amer. Math. Soc. (2) 13 (1960), 185–264. (Uspekhi Mat. Nauk 12, no. 2 (74) (1957), 43–118 )Google Scholar
  627. [A4]
    Goldberg, S.:Unbounded linear operators, McGraw-Hill, 1966.Google Scholar
  628. [A5]
    Kato, T.:Perturbation theory for linear operators, Springer, 1976.Google Scholar
  629. [1]
    Fredholm, E.I.: ‘Sur une classe d’equations fonctionnelles’,Acta Math.27 (1903), 365–390.zbMATHCrossRefMathSciNetGoogle Scholar
  630. [A1]
    Gohberg, I. and Goldberg, S.:Basic operator theory, Birkauser, 1981.Google Scholar
  631. [A2]
    Jorgens, K.:Lineare Integraloperatoren, Teubner, 1970.Google Scholar
  632. [A3]
    Smirnov, V.I.:A course of higher mathematics, 4, Addison-Wesley, 1964 (translated from the Russian).Google Scholar
  633. [A4]
    Zabretko, P.P., Koshelev, A.I., Krasnoselskit, M.A., Mikhlin, S.G., Rakovshchik, L.S., Stet’senko, V.Ya., Shaposhnikova, T.O. and Anderssen, R.S. (Eds.):Integral equations—a reference text, Noordhoff, 1975.Google Scholar
  634. [1]
    Kurosh, A.G.:The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  635. [2]
    Kargapolov, M.I. and Merzlyakov, Yu.I.:Fundamentals of the theory of groups, Springer, 1979 (translated from the RusSian).Google Scholar
  636. [A1]
    Fuchs, L.:Infinite abelian groups, 1, Acad. Press, 1970.Google Scholar
  637. [1]
    Mal’tsev, A.I.:Algebraic systems, Springer, 1973 (translated from the Russian).Google Scholar
  638. [2]
    Jónsson, B. and Tarski, A.: ‘On two properties of free algebras’,Math. Scand.9 (1961), 95–101.zbMATHMathSciNetGoogle Scholar
  639. [3]
    Swierczkowski, S.: ‘On isomorphic free algebras’,Fund. Math.50, no. 1 (1961), 35–44.zbMATHMathSciNetGoogle Scholar
  640. [4]
    Gratzer, G.: ‘On the existence of free structures over universal classes’,Math. Nachr.36, no. 3–4 (1968), 135–140.Google Scholar
  641. [1]
    Cohn, P.M.:Universal algebra, Reidel, 1981.Google Scholar
  642. [2]
    Cohn, P.M.:Free rings and their relations, Acad. Press, 1971.zbMATHGoogle Scholar
  643. [1]
    Sikorski, R.:Boolean algebras, Springer, 1969.Google Scholar
  644. [2]
    Vladimirov, D.A.:Boolesche Algebren, Akademie Verlag, 1978 (translated from the Russian).Google Scholar
  645. [3]
    Halmos, P.R.:Lectures on Boolean algebras, v. Nostrand, 1963.Google Scholar
  646. [4]
    Birkhoff, G.:Lattice theory, Colloq. Publ., 25, Amer. Math. Soc., 1973.Google Scholar
  647. [5]
    Kislyakov, S.V.: ‘Free subalgebras of complete Boolean algebras, and spaces of continuous functions’,Siberian Math. J.14 (1973), 395–403. (Sibirsk. Mat. Zh.14, no. 3 (1973), 569–581 )Google Scholar
  648. [1]
    Kurosh, A.G.:The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  649. [2]
    Magnus, W., Karras, A. and Solitar, D.:Combinatorial group theory: presentations of groups in terms of generators and relations, Interscience, 1966.Google Scholar
  650. [3]
    Neumann, H.:Varieties of groups, Springer, 1967.Google Scholar
  651. [1]
    Andronov, A.A., Vitt, A.A. and Khaikin, S.E.:Theory of oscillators, Dover, reprint, 1987 (translated from the Russian).Google Scholar
  652. [2]
    Gorelik, G.S.:Oscillations and waves, Moscow-Leningrad, 1950 (in Russian).Google Scholar
  653. [3]
    Landau, L.D. and Lifshits, E.M.:Mechanics, Pergamon, 1965 (translated from the Russian).Google Scholar
  654. [A1]
    Cohn, P.M.:Free rings and their relations, Acad. Press, 1971.zbMATHGoogle Scholar
  655. [1A]
    Whitman, P.M.: ‘Tree lattices’,Ann. of Math.42 (1941), 325–330.CrossRefMathSciNetGoogle Scholar
  656. [1B]
    Whitman, P.M.: ‘Tree lattices, II’,Ann. of Math.43 (1942), 104–115.CrossRefMathSciNetGoogle Scholar
  657. [A1]
    Dedekind, R.: ‘Ueber die von drei Moduln erzeugte Dualgruppe’,Math. Ann.53 (1900), 371–403.zbMATHCrossRefMathSciNetGoogle Scholar
  658. [A2]
    Hales, A.W.: ‘On the non-existence of free complete algebras’,Fund. Math.54 (1964), 45–66.zbMATHMathSciNetGoogle Scholar
  659. [1]
    Cohn, P.M.:Free rings and their relations, Acad. Press, 1971.zbMATHGoogle Scholar
  660. [2]
    Maclane, S.:Homology, Springer, 1963.Google Scholar
  661. [A1]
    Linton, F.E.J.: ‘Coequalizors in categories of algebras’, inSeminar on Triples and Categorical Homology Theory, Lecture Notes in Math., Vol. 80, Springer, 1969, pp. 75–90.Google Scholar
  662. [A1]
    Linton, F.E.J.: ‘Coequalizors in categories of algebras’, inSeminar on Triples and Categorical Homology Theory, Lecture Notes in Math., Vol. 80, Springer, 1969, pp. 75–90.Google Scholar
  663. [1]
    Kurosh, A.G.:The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  664. [2]
    Magnus, W., Karras, A. and Solitar, D.:Combinatorial group theory: presentations of groups in terms of generators and relations, Interscience, 1966.Google Scholar
  665. [1]
    Clifford, A.H. and Preston, G.B.:The algebraic theory of semigroups, 1–2, Amer. Math. Soc., 1961–1967.Google Scholar
  666. [2]
    Lyapin, E.S.:Semigroups, Amer. Math. Soc., 1974 (translated from the Russian).Google Scholar
  667. [3]
    Gross, M. and Lentin, A.:Introduction to formal grammars, Springer, 1970 (translated from the French).Google Scholar
  668. [4]
    Markov, A.A.:Introduction to coding theory, Moscow, 1982 (in Russian).Google Scholar
  669. [5]
    Eilenberg, S.:Automata, languages and machines, A–B, Acad. Press, 1974–1976.Google Scholar
  670. [6]
    Lallement, G.:Semi-groups and combinatorial applications, Wiley, 1979.Google Scholar
  671. [7]
    Lentin, A.:Equations dans les monoids libres, Mouton, 1972.Google Scholar
  672. [8]
    Khmelevskii, Yu.I.: ‘Equations in free semi-groups’,Proc. Steklov Inst. Math.107 (1976). (Trudy Mat. Inst. Steklov.107 (1971))Google Scholar
  673. [9]
    Makanin, G.S.: ‘The problem of solvability of equations in a free semigroup’,Math. USSR-Sb.32, no$12 (1977), 129–198. (Mat. Sb.103, no. 2 (1977), 147–236 ).MathSciNetGoogle Scholar
  674. [A1]
    Kleene, S.C.:Introduction to metamathematics, North-Holland, 1951.Google Scholar
  675. [A1]
    Hsiung, C.C.:A first course in differential geometry, Wiley, 1981.Google Scholar
  676. [A1]
    Hsiung, C.C.:A first course in differential geometry, Wiley, 1981.Google Scholar
  677. [1]
    Lur’e, A.I.:Some non-linear problems of the theory of automatic control, Moscow-Leningrad, 1951 (in Russian).Google Scholar
  678. [2]
    Popov, V.M.:Hyperstability of control systems, Springer, 1973 (translated from the Rumanian).Google Scholar
  679. [3]
    Yakubovich, V.A.: ‘A frequency theorem in control theory’,Sib. Math. J.14, no$12 (1973), 265–289. (Sibirsk. Mat. Zh.14, no. 2 (1973), 384–420 )zbMATHGoogle Scholar
  680. [4]
    Gelig, A.K., Leonov, G.A. and Yakubovich, V.A.:Stability of non-linear systems with a unique equilibrium state, Moscow, 1978 (in Russian).Google Scholar
  681. [5]
    Methods for studing non-linear systems of automatic control, Moscow, 1975 (in Russian).Google Scholar
  682. [6]
    Siljak, D.D.:Nonlinear systems, Wiley, 1969.Google Scholar
  683. [7]
    Fomin, V.N., Fradkov, A.L. and Yakubovich, V.A.:Adaptive control of dynamic objects, Moscow, 1981 (in Russian).Google Scholar
  684. [8A]
    Willems, J.C.: ‘Almost invariant subspaces: an approach to high gain feedback design I. Almost controlled invariant subspaces’,IEEE Trans. Autom Control 1 (1981), 235–252.CrossRefMathSciNetGoogle Scholar
  685. [8B]
    Willems, J.C.: ‘Almost invariant subspaces: an approach to high gain feedback design I. Almost conditionally invariant subspaces’,IEEE Trans. Autom Control 5 (1982), 1071–1084.CrossRefMathSciNetGoogle Scholar
  686. [9]
    Coppel, W.: ‘Matrix quadratic equations’,Bull. Austr. Math. Soc.10 (1974), 377–401.zbMATHCrossRefMathSciNetGoogle Scholar
  687. [A1]
    Kalman, R.E.: ‘Lyapunov functions for the problem of Lurie in automatic control’,Proc. Nat. Acad. Soc. USA 49, no. 2 (1963), 201–205.zbMATHCrossRefMathSciNetGoogle Scholar
  688. [A2]
    Anderson, B.D.O. and Vongpanitlerd, S.:Network analysis and synthesis: a modern systems theory approach, Prentice-Hall, 1973.Google Scholar
  689. [1]
    Bateman, H. and Erdslyi, A.:Higher transcendental functions. Bessel functions, 2, McGraw-Hill, 1953.Google Scholar
  690. [2]
    Jahnke, E. and Emde, F.:Tables of functions with formulae and curves, Dover, reprint, 1945 (translated from the German).Google Scholar
  691. [A1]
    Segun, A. and Abramowitz, M.:Handbook of mathematical functions, Appl. Math. Ser., 55, Nat. Bur. Stand., 1970.Google Scholar
  692. [A2]
    Spanier, J. and Oldham, K.B.:An atlas of functions, Hemisphere amp; Springer, 1987, Chapt. 39.Google Scholar
  693. [A3]
    Lebedev, N.N.:Special functions and their applications, Dover, reprint, 1972, pp. 21–33 (translated from the Russian).Google Scholar
  694. [1A]
    Freudenthal, H.: ‘Neuaufbau der Endentheorie’,Ann. of Math.43, no. 2 (1942), 261–279.zbMATHCrossRefMathSciNetGoogle Scholar
  695. [1B]
    Freudenthal, H.: ‘Kompaktisierungen und Bikompaktisierungen’,Indag. Math.13 (1951), 184–192.MathSciNetGoogle Scholar
  696. [2]
    Sklyarenko, E.G.: ‘Bicompact extensions of semibicompact spaces’,Dokl. Akad. Nauk SSSR 120, no. 6 (1958), 1200–1203 (in Russian).zbMATHMathSciNetGoogle Scholar
  697. [3A]
    Sklyarenko, E.G.: ‘Some questions in the theory of bicompactifications’,Izv. Akad Nauk SSSR Ser. Mat.26, no. 3 (1962), 427–452 (in Russian).zbMATHMathSciNetGoogle Scholar
  698. [3B]
    Sklyarenko, E.G.: ‘Bicompactifications with punctiform boundary and their cohomology groups’,Izv. Akad Nauk SSSR Ser. Mat.27, no. 5 (1963), 1165–1180 (in Russian).zbMATHMathSciNetGoogle Scholar
  699. [1]
    Friedrichs, K.O.: ‘Eine invariante Formulierung des Newtonschen Gravititationsgesetzes und des Grenziiberganges vom Einsteinschen zum Newtonschen Gesetz’,Math. Ann.98 (1927), 566–575.zbMATHCrossRefMathSciNetGoogle Scholar
  700. [2]
    Sobolev, S.L.:Applications of functional analysis in mathematical physics, Amer. Math. Soc., 1963 (translated from the Russian).Google Scholar
  701. [3]
    Nikol’skii, S.M. and Lizorkin, P.I.: ‘On some inequalities for weight-class functions and boundary-value problems with a strong degeneracy at the boundary’,Soviet Math. Dokl.5 (1964), 1535–1539. (Dokl. Akad Nauk SSSR 159, no. 3 (1964), 512–515 )MathSciNetGoogle Scholar
  702. [4]
    Nikol’skii, S.M.:Approximation of functions of several variables and imbedding theorems, Springer, 1975 (translated from the Russian).Google Scholar
  703. [5]
    Kalinichenko, D.F.: ‘Some properties of functions in the spacesWpm andW p,α1m,…,α3’,Mat. Sb.64, no. 3 (1964), 436–457 (in Russian).MathSciNetGoogle Scholar
  704. [6]
    Courant, R. and Hilbert, D.:Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  705. [7]
    Nirenberg, L.: ‘On elliptic partial differential equations’,Ann. Scuola Norm. Sup. Pisa Ser.3 13, no. 2 (1959), 115–162.MathSciNetGoogle Scholar
  706. [8]
    Sandgren, L.: ‘A vibration problem’,Medd Lunds Univ. Mat. Sem.13 (1955), 1–84.MathSciNetGoogle Scholar
  707. [1]
    Curtis, C.W. and Reiner, I.:Representation theory of finite groups and associative algebras, Interscience, 1962.Google Scholar
  708. [2]
    Faith, C.:Algebra: rings, modules and categories, 1–2, Springer, 1973–1976.Google Scholar
  709. [3]
    Frobenius, G.: ‘Theorie der hyperkomplexen Grossen’,Sitzungsber. Konigl. Preuss. Akad. Wiss., no. 24 (1903), 504–537; 634–645.Google Scholar
  710. [1]
    Weil, A.:Basic number theory, Springer, 1974.Google Scholar
  711. [1]
    Hartshorne, R.:Algebraic geometry, Springer, 1977.Google Scholar
  712. [A1]
    Gabriel, P.: ‘Etude infinitesimal des schemas en groupes’, in M. Demazure and A. Grothendieck (eds.):SGA 3. Exp. VII, Lecture notes in math., Vol. 151, Springer, 1970.Google Scholar
  713. [1]
    Murnaghan, F.D.:The theory of group representations, J. Hopkins, Baltimore, 1938.Google Scholar
  714. [A1]
    Boerner, H.:Representations of groups, North-Holland, 1970 (translated from the German).Google Scholar
  715. [A2]
    Littlewood, D.E.:The theory of group characters, Oxford Univ. Press, 1950.Google Scholar
  716. [A3]
    Macdonald, I.G.:Symmetric functions and Hall polynomials, Clarendon Press, 1979.Google Scholar
  717. [A4]
    Wybourne, B.G.:Symmetry principles and atomic spectroscopy, Wiley (Interscience), 1970.Google Scholar
  718. [1]
    Frobenius, G.: ‘Ueber lineare Substitutional and bilineare Formen’,J. Reine Angew. Math.84 (1878), 1–63.CrossRefGoogle Scholar
  719. [2]
    Kurosh, A.G.:Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  720. [A1]
    Kervaire, M.: ‘Non-parallelizability of then-sphere forngt;7’,Proc. Nat. Acad. Sc. USA 44 (1958), 280–283.zbMATHCrossRefGoogle Scholar
  721. [A2]
    Milnor, J.W.: ‘Some consequences of a theorem of Bott’,Ann. of Math.68 (1958), 444–449.zbMATHCrossRefMathSciNetGoogle Scholar
  722. [A3]
    Curtis, C.W. and Reiner, I.:Representation theory of finite groups and associative algebras, Interscience, 1962.Google Scholar
  723. [1]
    Frobenius, G.: ‘Ueber das Pfaffsche Problem’,J. Reine Angew. Math.82 (1877), 230–315.CrossRefGoogle Scholar
  724. [2]
    Hartman, P.:Ordinary differential equations, Birkhauser, 1982.Google Scholar
  725. [1]
    Frommer, M.: ‘Die Integralkurven einer gewohnlichen Differentialgleichung erster Ordnung in der Umgebung rationaler Unbestimmtheitsstellen’,Math. Ann.99 (1928), 222–272.zbMATHCrossRefMathSciNetGoogle Scholar
  726. [2]
    Andreev, A.F.:Singular points of differential equations, Minsk, 1979 (in Russian).Google Scholar
  727. [A1]
    Hartman, P.:Ordinary differential equations, Birkhauser, 1982, pp. 220–227.Google Scholar
  728. [A1]
    Sedov, L.I.:Similarity and dimensional methods in mechanics, Infosearch, 1959.Google Scholar
  729. [A2]
    Birkhoff, G.:Hydrodynamics, Princeton Univ. Press, 1960.Google Scholar
  730. [1]
    Cowling, T.G.:Magneto-hydrodynamics, Interscience, 1957.Google Scholar
  731. [2]
    Landau, L.D. and Lifshitz, E.M.:Electrodynamics of continous media, Pergamon, 1960 (translated from the Russian).Google Scholar
  732. [3]
    Kulikovskii, A.G. and Lyubimov, G.A.:Magnetic hydro-dynamics, Moscow, 1962 (in Russian).Google Scholar
  733. [1]
    Fubini, G. and Cech, E.:Geometria proettiva differenziale, 1–2, Bologna, 1926–1927.Google Scholar
  734. [2]
    Kagan, V.F.:Foundations of the theory of surfaces in a tensor setting, 2, Moscow-Leningrad, 1948 (in Russian).Google Scholar
  735. [3]
    Shirokov, P. A. and Shirokov, A.P.:Differentialgeometrie, Teubner, 1962 (translated from the Russian).Google Scholar
  736. [1]
    Fubini, G.:Ann. Scuola Norm. Sup. Pisa 9 (1904), 1–74.Google Scholar
  737. [2]
    Rozenfel’d, B.A.:Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  738. [A1]
    Berger, M.:Geometry, 2, Springer, 1987, Sect. 8. 9.Google Scholar
  739. [1]
    Fubini, G.: ‘Sulle metriche definite da una forme Hermitiana’,Atti Istit. Veneto 63 (1904), 502–513.Google Scholar
  740. [2]
    Study, E.: ‘Kurzeste Wege im komplexen Gebiet’,Math. Ann.60 (1905), 321–378.zbMATHCrossRefMathSciNetGoogle Scholar
  741. [3]
    Cartan, E.:Legons sur la geometrie projective complexe, Gauthier-Villars, 1950.Google Scholar
  742. [4]
    Helgason, S.:Differential geometry and symmetric spaces, Acad. Press, 1962.Google Scholar
  743. [5]
    Chern, S.S.:Complex manifolds, Univ. Recife, 1959.zbMATHGoogle Scholar
  744. [A1]
    Helgason, S.:Differential geometry, Lie groups, and symmetric spaces, Acad. Press, 1978.Google Scholar
  745. [A2]
    Wells, Jr., R.O.:Differential analysis on complex manifolds, Springer, 1980.Google Scholar
  746. [A3]
    Chirka, E.M.:Complex analytic sets, Kluwer, 1989 (translated from the Russian).Google Scholar
  747. [1]
    Fubini, G.: ‘Sugli integrali multipli’, inOpere scelte, Vol. 2, Cremonese, 1958, pp. 243–249.Google Scholar
  748. [1A]
    Fuchs, J.L.: ‘Zur Theorie der linearen Differentialgleichungen mit Veranderlichen Koeffizienten’,J. Reine Angew. Math.66 (1866), 121–160.zbMATHCrossRefGoogle Scholar
  749. [1B]
    Fuchs, J.L.: ‘Zur Theorie der linearen Differentialgleichungen mit Veranderlichen Koeffizienten. Erganzung’,J. Reine Angew. Math.68 (1868), 354–385.zbMATHCrossRefGoogle Scholar
  750. [2]
    Poincaré, H.:Papers on Fuchsian functions, Springer, 1985 (translated from the French).Google Scholar
  751. [3]
    Lappo-Danilevskiĭ, I.A.:Applications des fonctions matrices dans la theorie des systeme des equations differentielles ordinaires lineaires, Moscow, 1957 (in Russian; translated from the French).Google Scholar
  752. [4]
    Coddington, E.A. and Levinson, N.:Theory of ordinary differential equations, McGraw-Hill, 1955.Google Scholar
  753. [5]
    Golubev, V.V.:Vorlesungen iiber Differentialgleichungen im Komplexen, Deutsch. Verlag Wissenschaft., 1958 (translated from the Russian).Google Scholar
  754. [6]
    Smirnov, V.I.:A course of higher mathematics, 3, Addison-Wesley, 1964, Part 2 (translated from the Russian).Google Scholar
  755. [7]
    Ince, E.L.:Ordinary differential equations, Dover, reprint, 1956.Google Scholar
  756. [A1]
    Hille, E.:Ordinary differential equations in the complex domain, Wiley, 1976.Google Scholar
  757. [A2]
    Lappo-Danilevskit, I.A.:Memoire sur la theorie des systemes des equations differentiates lineaires, Dover, reprint, 1953.Google Scholar
  758. [A3]
    Plemelj, J.:Problems in the sense of Riemann and Klein, Wiley, 1964.Google Scholar
  759. [A4]
    Birkhoff, G.D.: ‘Singular points of ordinary linear differential equations’,Trans. Amer. Math. Soc.10 (1909), 434–470.Google Scholar
  760. [A5]
    Birkhoff, G.D.: ‘A simplified treatment of the regular singular point’,Trans. Amer. Math. Soc.11 (1910), 199–202.zbMATHCrossRefMathSciNetGoogle Scholar
  761. [A6]
    Chudnovsky, D.V.: ‘Riemann, monodromy problem, isomonodromy deformations and completely integrable systems’, in C. Bardos and D. Bessis (eds.):Bifurcation phenomena in mathematical physics and related topics, Reidel, 1980, pp. 385–447.Google Scholar
  762. [A7]
    Jimbo, M., Miwa, T. and Sato, M.: ‘Holonomic quantum fields—the unanticipated link between deformation theory of differential equations and quantum fields’, in K. Osterwalder (ed.):Mathematical problems in theoretical physics, Springer, 1980, pp. 119–142.CrossRefGoogle Scholar
  763. [1]
    Fuchs, L.: ‘Ueber eine Klasse von Funktionen mehrerer Variables welche durch Umkehrung der Integrate von Losungen der linearen Differentialgleicliungen mit rationalen Coeffizienten entstehen’,J. Reine Angew. Math.89 (1880), 151–169.CrossRefGoogle Scholar
  764. [2]
    Poincaré, H.: ‘Theorie des groupes Fuchsiennes’,Acta. Math.1 (1882), 1–62.zbMATHCrossRefMathSciNetGoogle Scholar
  765. [3]
    Fricke, R. and Klein, F.:Vorlesungen iiber die Theorie der automorphen Funktionen, 1–2, Teubner, 1897–1912.Google Scholar
  766. [4A]
    Ahlfors, L.: ‘The complex analytic structure of the space of closed Riemann surfaces’, inAnalytic functions, Princeton Univ. Press, 1960, pp. 45–66.Google Scholar
  767. [4B]
    Bers, L.: ‘Quasiconformal mapings and Teichmüller’s theorem’, inAnalytic functions, Princeton Univ. Press, 1960, pp. 89–120.Google Scholar
  768. [5]
    Krushkal’, S.L., Apanasov, B.N. and Gusevskiĭ, N.A.:Kleinian groups and uniformization in examples and problems, Amer. Math. Soc., 1986 (translated from the Russian).Google Scholar
  769. [6]
    Natanson, S.M.: ‘Invariant lines of Fuchsian groups’,Russian Math. Surveys 27 (1972), 161–177. (Uspekhi Mat. Nauk 27, no. 4 (1972), 145–160 )Google Scholar
  770. [7]
    Vinberg, E.B. and Svartsman, O.V.: ‘Riemann surfaces’,J. Soviet Math.14 (1980), 985–1020. (Itogi Nauk. i Tekhn. Algebra Topol. Geom 16 (1978), 191–245 )Google Scholar
  771. [8]
    Lehner, J.:Discontinuous groups and automorphic functions, Amer. Math. Soc., 1964.zbMATHGoogle Scholar
  772. [9]
    Magnus, W.:Non Euclidean tesselations and their groups, Acad. Press, 1974.Google Scholar
  773. [10]
    Singerman, D.: ‘Finitely maximal Fuchsian groups’,J. London Math. Soc.6, no. 1 (1972), 29–38.zbMATHCrossRefMathSciNetGoogle Scholar
  774. [A1]
    Ford, L.R.:Automorphic functions, Chelsea, reprint, 1951.Google Scholar
  775. [A2]
    Ahlfors, L.V. and Sario, L.:Riemann surfaces, Princeton Univ. Press, 1974.Google Scholar
  776. [A3]
    Farkas, H.M. and Kra, I.:Riemann surfaces, Springer, 1980.Google Scholar
  777. [A4]
    Beardon, A.F.:The geometry of discrete groups, Springer, 1983.Google Scholar
  778. [A5]
    Maskit, B.:Kleinian groups, Springer, 1988.Google Scholar
  779. [A1]
    Mitchell, B.:Theory of categories, Acad. Press, 1965.Google Scholar
  780. [1]
    Mal’tsev, A.I.:Algebraic systems, Springer, 1973 (translated from the Russian).Google Scholar
  781. [A1]
    Cohn, P.M.:Universal algebra, Reidel, 1981.Google Scholar
  782. [1]
    Magnus, W., Karras, A. and Solitar, D.: Combinatorial group theory: presentations of groups in terms of generators and relations, Interscience, 1966.Google Scholar
  783. [1]
    Euler, L.:Einleitung in die Analysis des Unendlichen, 1, Springer, 1983 (translated from the Latin).Google Scholar
  784. [2]
    Lobachevskiĭ, N.I.:Complete works, 5, Moscow-Leningrad, 1951 (in Russian).Google Scholar
  785. [3]
    Dedekind, R.:The nature and meaning of numbers, The Open Court Publ. Comp., 1901 (translated from the German).Google Scholar
  786. [4]
    Hausdorff, F.:Grundzuge der Mengenlehre, Leipzig, 1914. Reprinted (incomplete) English translation: Set theory, Chelsea (1978).Google Scholar
  787. [5]
    Tarski, A.:Introduction to logic and to the methodology of deductive sciences, Oxford Univ. Press, 1946 (translated from the German).Google Scholar
  788. [6]
    Kuratowski, K.:Topology, 1, Acad. Press, 1966 (translated from the French).Google Scholar
  789. [7]
    Frege, G.:Funktion und Begriff, H. Pohle, 1891. (Reprint: Kleine Schriften, G. Olms, 1967 ).Google Scholar
  790. [8]
    Church, A.:Introduction to mathematical logic, 1, Princeton Univ. Press, 1956.Google Scholar
  791. [9]
    Yushkevich, A.P.: ‘The concept of function up to the middle of the nineteenth century’,Arch. History of Exact Sci.16 (1977), 37–85. (Istor.-Mat. Issled.17 (1966), 123–150 )zbMATHGoogle Scholar
  792. [10]
    Medvedev, F.A.:Outlines of the history of the theory of functions of a real variable, Moscow, 1975 (in Russian).Google Scholar
  793. [A1]
    Maclane, S.:Mathematics: form and function, Springer, 1986.Google Scholar
  794. [A2]
    Royden, H.L.:Real analysis, Macmillan, 1963.Google Scholar
  795. [A3]
    Rooy, A.C.M. Van and Schikhof, W.H.:A second course on real functions, Cambridge Univ. Press, 1982.Google Scholar
  796. [A4]
    Gelbaum, B.R. and Olmsted, J.M.H.:Counterexamples in analysis, Holden-Day, 1964.Google Scholar
  797. [1]
    Nevanlinna, R.:Analytic functions, Springer, 1970 (translated from the German).Google Scholar
  798. [2]
    Markushevich, A.I.:Theory of functions of a complex variable, 2, Chelsea, 1977 (translated from the Russian).Google Scholar
  799. [3]
    Priwalow, I.I. [I.I. Privalov]:Randeigenschaften analytischer Fimktionen, Deutsch. Verlag Wissenschaft., 1956 (translated from the Russian).Google Scholar
  800. [4]
    Itogi Nauk. Mat. Anal. 1963 (1965), 5–80.Google Scholar
  801. [5]
    Rudin, W.:Function theory in poly discs, Benjamin, 1969.Google Scholar
  802. [1]
    Jordan, C.: ‘Sur la serie de Fourier’,C.R. Acad. Sci. Paris 92 (1881), 228–230.Google Scholar
  803. [2]
    Natanson, I.P.:Theorie der Funktionen einer reellen Veranderlichen, H. Deutsch, Frankfurt a.M., 1961 (translated from the Russian).Google Scholar
  804. [1]
    Vladimirov, V.S.:Generalized functions in mathematical physics, Moscow, 1979 (in Russian).Google Scholar
  805. [2]
    Sobolev, S.L.:Applications of functional analysis in mathematical physics, Amer. Math. Soc., 1963 (translated from the Russian).Google Scholar
  806. [A1]
    Schwartz, L.:Theorie des distributions, 1–2, Herman, 1950–1951.Google Scholar
  807. [A2]
    Lions, J.L. and Magenes, E.:Non-homogenous boundary value problems and applications, 1–2, Springer, 1972 (translated from the French).Google Scholar
  808. [A3]
    Yosida, K.:Functional analysis, Springer, 1980.Google Scholar
  809. [1]
    Levin, B.Ya.:Distributions of zeros of entire functions, Amer. Math. Soc., 1964 (translated from the Russian).Google Scholar
  810. [A1]
    Boas, R.P.:Entire functions, Acad. Press, 1954.zbMATHGoogle Scholar
  811. [1]
    Kolmogorov, A.N. and Fomin, S.V.:Elements of the theory of functions and functional analysis, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  812. [1]
    Ahiezer, N.I. [N.I. Akhiezer] and Glazman, I.M.:Theory of linear operators in Hilbert space, 1–2, Pitman, 1984 (translated from the Russian).Google Scholar
  813. [2]
    Banach, S.S.:A course of functional analysis, Kiev, 1948 (in Ukrainian).Google Scholar
  814. [3]
    Berezanskiy, Yu.M. [Yu.M. Berezanskiĭ]:Expansion in eigenfunctions of self adjoint operators, Amer. Math. Soc., 1968 (translated from the Russian).Google Scholar
  815. [4]
    Bourbaki, N.:Elements of mathematics. Topological vector spaces, Springer, 1987 (translated from the French).Google Scholar
  816. [5]
    Vulikh, B.Z.:Introduction to the theory of partially ordered spaces, Wolters-Noordhoff, 1967 (translated from the Russian).Google Scholar
  817. [6]
    Gel’fand, I.M. and Shilov, G.E.:Generalized functions, Acad. Press, 1964 (translated from the Russian).Google Scholar
  818. [7]
    Gelfand, I.M. [I.M. Gel’fand], Raikov, D.A. [D.A. Raikov] and Schilow, G.E. [G.E. Shilov]:Kommutative Normierte Ringe, Deutsch. Verlag Wissenschaft., 1964 (translated from the Russian).Google Scholar
  819. [8]
    Dunford, N. and Schwartz, J.T.:Linear operators, 1–3, Interscience, 1958–1971.Google Scholar
  820. [9]
    Yosida, K.:Functional analysis, Springer, 1980.Google Scholar
  821. [10]
    Kantorovich, L.V.: ‘Functional analysis and applied mathematics’,Uspekhi Mat. Nauk 3, no. 6 (1948), 89–185 (in Russian).zbMATHGoogle Scholar
  822. [11]
    Kantorovich, L.V. and Akilov, G.P.:Funktionalanalysis in normierten Raume, Akad. Verlag, 1964 (translated from the Russian).Google Scholar
  823. [12]
    Kirillov, A.A.:Elements of the theory of representations, Springer, 1976 (translated from the Russian).Google Scholar
  824. [13]
    Kolmogorov, A.N. and Fomin, S.V.:Elements of the theory of functions and functional analysis, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  825. [14]
    Krasnosel’skiĭ, M.A.:Topological metods in the theory of non-linear integral equations, Pergamon, 1964 (translated from the Russian).Google Scholar
  826. [15]
    Ljusternik, L.A. [L.A. Lyusternik] and Sobolew, W.I. [V.I. Sobolev]:Elemente der Funktionalanalysis, H. Deutsch, Frankfurt a. M, 1979.Google Scholar
  827. [16]
    Naimark, M.A.:Linear differential operators, 1–2, F. Ungar, 1967–1968 (translated from the Russian).Google Scholar
  828. [17]
    Naimark, M.A.:Normed rings, Reidel, 1984 (translated from the Russian).Google Scholar
  829. [18]
    Reed, M. and Simon, B.:Methods of modern mathematical physics, 1–4, Acad. Press, 1972–1978.Google Scholar
  830. [19]
    Riesz, F. and Szokefalvi-Nagy, B.:Functional analysis, F. Ungar, 1955 (translated from the French).Google Scholar
  831. [20]
    Sobolev, S.L.:Applications of functional analysis in mathematical physics, Amer. Math. Soc., 1963 (translated from the Russian).Google Scholar
  832. [21]
    Hille, E. and Phillips, R.:Functional analysis and semi-groups, Amer. Math. Soc., 1957.Google Scholar
  833. [22]
    Svarc, A.S.:Mathematical foundations of quantum field theory, Moscow, 1975 (in Russian).Google Scholar
  834. [23]
    Enflo, P.: ‘A counterexample to the approximation problem in Banach spaces’,Acta. Math.130 (1973), 309–317.zbMATHCrossRefMathSciNetGoogle Scholar
  835. [A1]
    Rudin, W.:Functional analysis, McGraw-Hill, 1973.Google Scholar
  836. [A2]
    Conway, J.B.:A course in functional analysis, Springer, 1985.Google Scholar
  837. [A3]
    Schaefer, H.H.:Topological vector spaces, Macmillan, 1966.Google Scholar
  838. [A4]
    Banach, S.S.:Theorie des operations lineaires, Hafner, 1932.Google Scholar
  839. [A5]
    Kothe, G.:Topological vector spaces, Ml, Springer, 1979.Google Scholar
  840. [A6]
    Lindenstrauss, J. and Tzafriri, L.:Classical Banach spaces, l–ll, Springer, 1977–1979.Google Scholar
  841. [A7]
    Schaefer, H.H.:Banach lattices and positive operators, Springer, 1974.Google Scholar
  842. [A8]
    Horvath, J.:Topological vector spaces and distributions, Addison-Wesley, 1966.Google Scholar
  843. [A9]
    Grothenddeck, A.: ‘Resume de la theorie metrique des produits tensoriels topologiques’,Bol. Soc. Mat Sao Paulo 8 (1956), 1–79.Google Scholar
  844. [A10]
    Pietsch, A.:Operator ideals, North-Holland, 1980.Google Scholar
  845. [A11]
    Diestel, J. and Uhl, J.J., Jr.:Vector measures, Amer. Math. Soc., 1977.zbMATHGoogle Scholar
  846. [A12]
    Kadison, R.V. and Ringrose, J.R.:Fundamentals of the theory of operator algebras, l–ll, Acad. Press, 1983-1986.Google Scholar
  847. [A13]
    Kato, T.:Perturbation theory for linear operators, Springer, 1976.Google Scholar
  848. [A14]
    Schwartz, J.T.:Non-linear functional analysis, Gordon amp; Breach, 1969.Google Scholar
  849. [A15]
    Choquet, G.:Lectures on analysis, l–lll, Benjamin, 1969.Google Scholar
  850. [A16]
    Rickart, C.E.:General theory of Banach algebra, v. Nostrand, 1960.Google Scholar
  851. [A17]
    Luxemburg, W.A.J. and Zaanen, A.C.:Riesz spaces, I, North-Holland, 1971.Google Scholar
  852. [A18]
    Schwartz, L.:Theorie des distributions, l–ll, Hermann, 1951.Google Scholar
  853. [1]
    Dunford, N. and Schwartz, J.T.:Linear operators, 1–3, Interscience, 1958–1971.Google Scholar
  854. [2]
    Bourbaki, N.:Elements of mathematics. Spectral theories, Addison-Wesley, 1977 (translated from the French).Google Scholar
  855. [3]
    Waelbroeck, L.: ‘Etude spectrale des algebres completes’,Acad Roy. Belgique CI. Sci.31, no. 7 (1960).Google Scholar
  856. [4]
    Taylor, J.L.: ‘Die analytic-functional calculus for several commuting operators’,Acta Math.125, no. 1–2 (1970), 1–38.Google Scholar
  857. [5]
    Dyn’kin, E.M.: ‘An operator calculus based on the Cauchy—Green formula’,Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst.30 (1972), 33–39 (in Russian).zbMATHMathSciNetGoogle Scholar
  858. [6]
    Neumann, J. Von: ‘Eine Spektraltheorie fur allgemeine Operatoren eines unitaren Raumes’,Math. Nachr.4 (1950–1951), 258–281.Google Scholar
  859. [7]
    Szokefalvi-Nagy, B. and Foias, C.:Harmonic analysis of operators on Hilbert space, North-Holland, 1970 (translated from the French).Google Scholar
  860. [8]
    Peller, V.V.: ‘Estimates of operator polynomials in symmetric spaces. Functional calculus for absolute contraction operators’,Math. Notes 25 (1979), 464–471. (Mat. Zametki 25, no. 6 (1979), 899–912 )zbMATHMathSciNetGoogle Scholar
  861. [9]
    Colojoara, I. and Foias, C.:Theory of generalized spectral operators, Gordon amp; Breach, 1968.zbMATHGoogle Scholar
  862. [10]
    Lyubich, Yu.I. and Matsaev, V.I.: ‘Operators with separable spectrum’,Mat. Sb.56, no. 2 (1962), 433–468 (in Russian).MathSciNetGoogle Scholar
  863. [11]
    Mikusinski, J.:Operational calculus, Pergamon, 1959 (translated from the Polish).Google Scholar
  864. [12]
    Maslov, V.P.:Operational methods, Mir, 1976 (translated from theRuSSian).Google Scholar
  865. [A1]
    Vasilescu, F.H.:Analytic functional calculus and spectral decompositions, Reidel amp; Editura Academici, 1982.zbMATHGoogle Scholar
  866. [1]
    Kantorovich, L.V. and Akilov, G.P.:Functional analysis, Moscow, 1977 (in Russian).Google Scholar
  867. [2]
    Riesz, F. and Szokefalvi-Nagy, B.:Functional analysis, F. Ungar, 1955 (translated from the French).Google Scholar
  868. [3]
    Davidenko, D.F.:Mathematical programming and related questions. Computing methods, Moscow, 1976, pp. 187–212 (in Russian).Google Scholar
  869. [4]
    Kantorovich, L.V.:Uspekhi Mat. Nauk 11, no. 6 (1956), 99–116.Google Scholar
  870. [5]
    Davidenko, D.F.:The theory of cubature formulas and computing, Novosibirsk, 1980, pp. 59–65 (in Russian).Google Scholar
  871. [6]
    Daletskii, Yu.L. and Krein, M.G.:Stability of solutions of differential equations in Banach space, Amer. Math. Soc., 1974 (translated from the Russian).Google Scholar
  872. [7]
    Encyclopaedia of elementary mathematics. Functions and limits, Vol. 3, Moscow-Leningrad, 1952 (in Russian).Google Scholar
  873. [8]
    Atsel’, Ya.:Uspekhi Mat. Nauk 11, no. 3 (1956), 3–68.Google Scholar
  874. [9]
    Fichtenholz, G.M.:Differential und Integralrechnung, 1, Deutsch. Verlag Wissenschaft., 1964.zbMATHGoogle Scholar
  875. [A1]
    Aczél, J. (Ed.):Functional equations: history, applications and theory, Reidel, 1984.Google Scholar
  876. [A2]
    Aczél, J.:Functional equations and their applications, Acad. Press, 1966.Google Scholar
  877. [A3]
    Aczél, J.:A short course on functional equations, Reidel, 1987.Google Scholar
  878. [A4]
    Dhombres, J.:Some aspects of functional equations, Chulalongkorn Univ., 1979.Google Scholar
  879. [A5]
    Kuczma, M.:Functional equations in a single variable, PWN, 1968.zbMATHGoogle Scholar
  880. [A6]
    Kuczma, M.:An introduction to the theory of functional equations and inequalities, PWN amp; Univ. Sląski, 1985.zbMATHGoogle Scholar
  881. [A7]
    Belavin, A.A. and Drinfel’d, V.G.: ‘On the solutions of the classical Yang-Baxter equations for simple Lie algebras’,Funct Anal. Appl.16 (1982), 159–180. (Funkts. Anal. Prilozh.16, no. 3 (1982), 1–29 )MathSciNetGoogle Scholar
  882. [A8]
    Hale, J.:Theory of functional differential equations, Springer, 1977.Google Scholar
  883. [A9]
    El’sgol’ts, L.E. and Norkin, S.B.:Introduction to the theory and application of differential equations with deviating arguments, Acad. Press, 1973.Google Scholar
  884. [A10]
    Kolmonovskit, V.B. and Nosov, V.R.:Stability of functional differential equations, Acad. Press, 1986.Google Scholar
  885. [A11]
    Salamon, D.:Control and observation of neutral systems, Pitman, 1984.Google Scholar
  886. [A12]
    Mohammed, S.E.A.:Retarded functional differential equations. A global point of view, Pitman, 1978.Google Scholar
  887. [1]
    Kantorovich, L.V.: ‘On Newton’s method’,Trudy Mat. Inst. Steklov.28 (1949), 104–144 (in Russian).MathSciNetGoogle Scholar
  888. [2]
    Krasnosel’skiĭ, M.A., et al.:Approximate solution of operator equations, Moscow, 1969 (in Russian).Google Scholar
  889. [3]
    Samarskiĭ, A.A.:Theorie der Differenzverfahren, Akad. Verlagsgesell. Geest u. Portig K.-D., 1984 (translated from the Russian).Google Scholar
  890. [4]
    Bakhvalov, N.S.:Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  891. [5]
    Davidenko, D.F.:Approximate methods for solving operator equations and their applications, Irkutsk, 1982, pp. 71–83 (in Russian).Google Scholar
  892. [6]
    Mertvetsova, M.A.: ‘Analogue of the process of tangent hyperbolas for general functional equations’,Dokl. Akad. Nauk SSSR 88, no. 4 (1953), 611–614 (in Russian).Google Scholar
  893. [7]
    Nechepurenko, M.I.: ‘On Chebychev’s method for functional equations’,Uspekhi Mat. Nauk 9, no. 2 (1954), 163–170 (in Russian).Google Scholar
  894. [8]
    Tamme, E.E.: ‘On approximately solving functional equations by the method of series expansion in the inverse operator’,Dokl. Akad. Nauk SSSR 103, no. 5 (1955), 769–772 (in Russian).zbMATHMathSciNetGoogle Scholar
  895. [9]
    Mysovskikh, I.P.: ‘On convergence of L.V. Kantorovich’s method for solving non-linear functional equations, and its applications’,Vestn. Leningrad. Univ.11 (1953), 25–48 (in Russian).Google Scholar
  896. [10]
    Davidenko, D.F.:Conf. programming and mathematical methods for solving physical problems, 1974, pp. 542–548 (in Russian).Google Scholar
  897. [11]
    Bel’tyukov, B.A.: ‘On a certain method of solution of nonlinear functional equations’,Zh. Vychisl. Mat. i Mat. Fiz.5, no. 5 (1965), 927–931 (in Russian).zbMATHGoogle Scholar
  898. [12]
    Vaarmann, O.: ‘Approximations of pseudo-inverse operators as applied to the solution of non-linear equations’,Izv. Akad. Nauk EstSSR 20, no. 4 (1971), 386–393 (in Russian). Estonian and English summaries.Google Scholar
  899. [13]
    Davidenko, D.F.:Theoretical and applied problems in computing, Moscow, 1981, pp. 61–63 (in Russian).Google Scholar
  900. [14]
    Liventsov, A.I.:Mat. Sb.8, no. 1 (1876), 80–160.Google Scholar
  901. [15]
    Sintsov, D.M.: ‘Notes on functional calculus’,Izv. Fiz.-Mat. Obshch. Kazan. Univ. (2) 13, no. 2 (1903), 46–72 (in Russian).Google Scholar
  902. [A1]
    Hale, J.K.:Functional differential equations, Springer, 1971.Google Scholar
  903. [A2]
    Aczél, J. (Ed.):Functional equations: history, applications and theory, Reidel, 1984.Google Scholar
  904. [A3]
    Aczél, J.:Functional equations and their applications, Acad. Press, 1966.Google Scholar
  905. [1]
    Liptser, R.Sh. and Shiryaev, A.N.:Statistics of random processes, Moscow, 1974 (in Russian).Google Scholar
  906. [2]
    Dynkin, E.B.:Foundations of the theory of Markov processes, Springer, 1961 (translated from the Russian).Google Scholar
  907. [3]
    Dynkin, E.B.:Markov processes, Springer, 1965 (translated from the Russian).Google Scholar
  908. [4]
    Revuz, D.: ‘Mesures associees aux fonctionelles additive de Markov I’,Trans. Amer. Math. Soc.148 (1970), 501–531.zbMATHMathSciNetGoogle Scholar
  909. [5]
    Benveniste, A.: ‘Application de deux theoremes de G. Mokobodzki a l’etude du noyau de Levy d’un processus de Hunt sans hypothese (L)’, inLecture notes in math., Vol. 321, Springer, 1973, pp. 1 - 24.Google Scholar
  910. [1]
    Arkhangel’skiĭ, A.V. and Ponomarev, V.I.:Fundamentals of general topology: problems and exercises, Reidel, 1984 (translated from the Russian).Google Scholar
  911. [2]
    Kelley, J.L.:General topology, Springer, 1975.Google Scholar
  912. [1]
    Yablonskiĭ, S.V.: ‘Functional constructions ink-valued logic’,Trudy Mat. Inst. Steklov.51 (1958), 5–142 (in Russian).MathSciNetGoogle Scholar
  913. [2]
    Yablonskiĭ, S.V.:Nauchn. Sov. Akad. Nauk SSSR Kibernet. Informal Mat.5 (42) (1970), 5–15.Google Scholar
  914. [3]
    Yablonskiĭ, S.V.: ‘On certain results in the theory of functional systems’, inProc. internal congress Mathematicians, Helsinki, Acad. Sci. Fennica, 1978, pp. 963–971 (in Russian).Google Scholar
  915. [4]
    Post, E.L.:Two-valued iterative systems of mathematical logic, Princeton Univ. Press, 1941.Google Scholar
  916. [5]
    Kudryavtsev, V.B.:Functional systems, Moscow, 1982 (in Russian).Google Scholar
  917. [A1]
    Willems, J.C.: ‘From time series to linear system—part I. Finite dimensional linear time invariant systems’,Automatics 22, no. 5 (1986), 561–580.zbMATHCrossRefMathSciNetGoogle Scholar
  918. [A2]
    Eilenberg, S.:Automata, languages and machines, 1–2, Acad. Press, 1974.Google Scholar
  919. [1]
    Priwalow, I.I. [I.I. Privalov]:Einfuhrung in die Funktionentheorie, 1–3, Teubner, 1958–1959 (translated from the Russian).Google Scholar
  920. [2]
    Markushevich, A.I.:Theory of functions of a complex variable, 1–2, Chelsea, 1977 (translated from the Russian).Google Scholar
  921. [3]
    Lavrent’ev, M.A. and Shabat, B.V.:Methoden der komplexen Funktionentheorie, Deutsch. Verlag Wissenschaft., 1967 (translated from the Russian).Google Scholar
  922. [4]
    Vladimirov, V.S.:Methods of the theory of functions of many complex variables, M.I.T., 1966 (translated from the Russian).Google Scholar
  923. [5]
    Shabat, B.V.:Introduction to complex analysis, 1–2, Moscow, 1969 (in Russian).Google Scholar
  924. [6]
    Vekua, I.N.:Generalized analytic functions, Pergamon, 1962 (translated from the Russian).Google Scholar
  925. [7]
    Hurwitz, A. and Courant, R.:Vorlesungen iiber allgemeine Funktionentheorie und elliptische Funktionen, Springer, 1964.Google Scholar
  926. [8]
    Gunning, R.C. and Rossi, H.:Analytic functions of several complex variables, Prentice-Hall, 1965.Google Scholar
  927. [9]
    Hormander, L.:An introduction to complex analysis in several variables, North-Holland, 1973.Google Scholar
  928. [A1]
    Ahlfors, L.V.:Complex analysis, McGraw-Hill, 1979.Google Scholar
  929. [A2]
    Carathsodory, C.:Theory of functions of a complex variable, 1–2, Chelsea, 1964 (translated from the German).Google Scholar
  930. [A3]
    Garnett, J.B.:Bounded analytic functions, Acad. Press, 1981.Google Scholar
  931. [A4]
    Rudin, W.:Real and complex analysis, McGraw-Hill, 1987.Google Scholar
  932. [A5]
    Saks, S. and Zygmund, A.:Analytic functions, PWN, 1965 (translated from the Polish).Google Scholar
  933. [A6]
    Conway, J.B.:Functions of a complex variable, Springer, 1973.Google Scholar
  934. [A7]
    Hille, E.:Analytic function theory, 1–2, Chelsea, reprint, 1974.Google Scholar
  935. [A8]
    Krantz, S.G.:Function theory of several variables, Wiley (Interscience), 1982.Google Scholar
  936. [A9]
    Range, R.M.:Holomorphic functions and integral representations in several complex variables, Springer, 1986.Google Scholar
  937. [A10]
    Boas, R.P.:Invitation to complex analysis, Random House, 1987.Google Scholar
  938. [A11]
    Burckell, R.B.:An introduction to classical complex analysis, 1, Acad. Press, 1979.Google Scholar
  939. [A12]
    Henrici, P.:Applied and computational complex analysis, 1–3, Wiley, 1974–1986.Google Scholar
  940. [A13]
    Heins, M.:Complex function theory, Acad. Press, 1968.Google Scholar
  941. [A14]
    Narasimhan, R.:Complex analysis in one variable, Birkhauser, 1985.Google Scholar
  942. [1]
    Baire, R.:Legons sur les fonctions discontinues, professees au college de France, Gauthier-Villars, 1905.Google Scholar
  943. [2]
    Lusin, N. [N.N. Luzin]:Sur les ensembles analytiques et leurs application, Gauthier-Villars, 1930 (translated from the Russian).Google Scholar
  944. [3]
    Luzin, N.N.:Collected works, Vol. 3, Moscow, 1959, pp. 319–341 (in Russian).Google Scholar
  945. [4]
    Lyapunov, A.A. and Novikov, S.P.: ‘Descriptive set theory’, inMathematics in the USSR during 30 years, Moscow-Leningrad, 1948 (in Russian).Google Scholar
  946. [5]
    Lebesgue, H.:Legons sur Vintegration et la recherche des fonctions primitives, Gauthier-Villars, 1928.Google Scholar
  947. [6]
    Kamke, E.:Das Lebesgue-Stieltjes Integral, Teubner, 1960.Google Scholar
  948. [7]
    Kolmogorov, A.N. and Fomin, S.V.:Elements of the theory of functions and functional analysis, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  949. [8]
    Ul’yanov, P.L.: ‘The metric theory of functions’, inThe history of national mathematics, Vol. 3, Kiev, 1968 (in Russian).Google Scholar
  950. [9]
    Hardy, G.H.:Divergent series, Clarendon, 1949.Google Scholar
  951. [10]
    Bohr, H.:Almost periodic functions, Chelsea, reprint, 1947 (translated from the German).Google Scholar
  952. [11]
    Levitan, B.M.:Almost-periodic functions, Moscow, 1953 (in Russian).Google Scholar
  953. [12]
    Chebyshev, P.L.: ‘Questions on smallest magnitudes connected with the approximate representation of functions’, inComplete collected works, Vol. 2, Moscow-Leningrad, 1947, pp. 151–235 (in Russian).Google Scholar
  954. [13]
    Lozinskiĭ, S.M. and Natanson, I.P.: ‘Metric and constructive theory of functions of a real variable’, inMathematics in the USSR during 40 years, Vol. 1, Moscow, 1959 (in Russian).Google Scholar
  955. [14]
    Nikol’skiĭ, S.M.: ‘The theory of approximation of functions by polynomials’, inThe history of national mathematics, Vol. 3, Kiev, 1968 (in Russian).Google Scholar
  956. [15]
    Nikol’skiĭ, S.M.:Approximation of functions of several variables and imbedding theorems, Springer, 1975 (translated from the Russian).Google Scholar
  957. [A1]
    Hemitt, E. and Stromberg, K.:Real and abstract analysis, Springer, 1965.Google Scholar
  958. [A2]
    Royden, H.L.:Real analysis, Macmillan, 1968.Google Scholar
  959. [A3]
    Rooy, A.C.M. Van and Schikhof, W.H.:A second course on real functions, Cambridge Univ. Press, 1982.Google Scholar
  960. [A4]
    Saks, S.:Theory of the integral, Hafner, 1952 (translated from the Polish).Google Scholar
  961. [A5]
    Lorentz, G.G.:Approximation of functions, Holt, Rinehart amp; Winston, 1966.zbMATHGoogle Scholar
  962. [A6]
    Choquet, G.:Outils topologiques et metriques de I’analyse mathematique, Centre de Documentation Univ. Paris, 1969. Redige par C. Mayer.Google Scholar
  963. [1]
    Bucur, I. and Deleanu, A.:Introduction to the theory of categories and functors, Wiley, 1968.Google Scholar
  964. [2]
    Cartan, H. and Eilenberg, S.:Homological algebra, Princeton Univ. Press, 1956.Google Scholar
  965. [3]
    Maclane, S.:Categories for the working mathematician, Springer, 1971.Google Scholar
  966. [4]
    Schubert, H.:Categories, Springer, 1972.Google Scholar
  967. [5]
    Tsalenko, M.Sh. and Shul’geifer, E.G.:Fundamentals of category theory, Moscow, 1974 (in Russian).Google Scholar
  968. [A1]
    Mitchell, B.:Theory of categories, Acad. Press, 1965.Google Scholar
  969. [A2]
    Adamek, J.:Theory of mathematical structures, Reidel, 1983.Google Scholar
  970. [A1]
    Mitchell, B.:Theory of categories, Acad. Press, 1965.Google Scholar
  971. [1]
    Fuks, D.B., Fomenko, A.T. and Gutenmakher, V.L.:Homotopic topology, Moscow, 1969 (in Russian).Google Scholar
  972. [2]
    Mosher, R.E. and Tangora, M.C.:Cohomology operations and applications in homotopy theory, Harper amp; Row, 1968.zbMATHGoogle Scholar
  973. [3]
    Husemoller, D.:Fibre bundles, McGraw-Hill, 1966.Google Scholar
  974. [4]
    Spanier, E.H.:Algebraic topology, McGraw-Hill, 1966.Google Scholar
  975. [5]
    Dold, A.:Lectures on algebraic topology, Springer, 1980.Google Scholar
  976. [1]
    Dold, A.:Lectures on algebraic topology, Springer, 1980.Google Scholar
  977. [2]
    Spanier, E.H.:Algebraic topology, McGraw-Hill, 1966.Google Scholar
  978. [3]
    Milnor, J.W. and Stasheff, J.D.:Characteristic classes, Princeton Univ. Press, 1974.Google Scholar
  979. [1]
    Kagan, V.F.:Foundations of the theory of surfaces in a tensor setting, Moscow-Leningrad, 1947, Chapt. 1 (in Russian).Google Scholar
  980. [2]
    Rashevskiĭ, P.K.:A course of differential geometry, Moscow, 1956 (in Russian).Google Scholar
  981. [3]
    Shulikovskii, V.I.:Classical differential geometry in a tensor setting, Moscow, 1963 (in Russian).Google Scholar
  982. [A1]
    Klingenberg, W.:A course in differential geometry, Springer, 1978.Google Scholar
  983. [A2]
    Spivak, M.:A comprehensive introduction to differential geometry, Publish or Perish, 1979.Google Scholar
  984. [A3]
    Blaschke, W. and Leichtweiss, K.:Elementare Differential-geometrie, Springer, 1975.Google Scholar
  985. [A4]
    Hicks, N.J.:Notes on differential geometry, v. Nostrand, 1965.Google Scholar
  986. [1]
    Massey, W.:Algebraic topology: an introduction, Springer, 1977.Google Scholar
  987. [2]
    Rokhlin, V.A. and Fuks, D.B.:Beginner’s course in topology: geometric chapters, Springer, 1984 (translated from the Russian).Google Scholar
  988. [3]
    Spanier, E.H.:Algebraic topology, McGraw-Hill, 1966.Google Scholar
  989. [4]
    Stallings, J.R.:Group theory and three-dimensional manifolds, Yale Univ. Press, 1972.Google Scholar
  990. [A1]
    Brown, R.: ‘From groups to groupoids: a brief survey’,Bull. London Math. Soc.19 (1987), 113–134.zbMATHCrossRefMathSciNetGoogle Scholar
  991. [1]
    Bourbaki, N.:Elements of mathematics. Functions of a real variable, Addison-Wesley, 1976 (translated from the French).Google Scholar
  992. [2]
    Gantmakher, F.R.:The theory of matrices, Chelsea, reprint, 1977 (translated from the Russian).Google Scholar
  993. [3]
    Demidovich, B.P.:Lectures on the mathematical theory of stability, Moscow, 1967 (in Russian).Google Scholar
  994. [4]
    Yakubovich, V.A. and Starzhinskii, V.M.:Linear differential equations with periodic coefficients, Wiley, 1975 (translated from the Russian).Google Scholar
  995. [A1]
    Brockett, R.W.:Finite dimensional linear systems, Wiley, 1970.zbMATHGoogle Scholar
  996. [A2]
    Hale, J.K.:Ordinary differential equations, Wiley, 1980.zbMATHGoogle Scholar
  997. [1]
    Alexandrov, P.S.:Introduction to set theory and general topology, Moscow, 1977 (in Russian).Google Scholar
  998. [2]
    Kolmogorov, A.N. and Fomin, S.V.:Elements of the theory of functions and functional analysis, Graylock, 1957–1961 (translated from the Russian).Google Scholar
  999. [3]
    Kelley, J.L.:General topology, Springer, 1975.zbMATHGoogle Scholar
  1000. [1]
    Vladimirov, V.S.:Generalized functions in mathematical physics, Moscow, 1979 (in Russian).Google Scholar
  1001. [2]
    Bers, L., John, F. and Schechter, M.:Partial differential equations, Interscience, 1964.Google Scholar
  1002. [3]
    John, F.:Plane waves and spherical means: applied to partial differential equations, Interscience, 1955.Google Scholar
  1003. [A1]
    Friedman, A.:Partial differential equations of parabolic type, Prentice-Hall, 1964.zbMATHGoogle Scholar
  1004. [A2]
    Ladyzhenskaya, O.A. and Ural’tseva, N.N.:Linear and quasilinear elliptic equations, Acad. Press, 1968 (translated from the Russian).zbMATHGoogle Scholar
  1005. [A3]
    Ladyzhenskaya, O.A., Solonnikov, V.A. and Ural’tseva, N.N.:Linear and quasilinear parabolic equations, Amer. Math. Soc., 1968 (translated from the Russian).Google Scholar
  1006. [A4]
    Schwartz, L.:Theorie des distributions, 1–2, Hermann, 1957–1959.Google Scholar
  1007. [A5]
    Gel’fand, I.M. and Shilov, G.E.:Generalized functions, Acad. Press, 1964 (translated from the Russian).zbMATHGoogle Scholar
  1008. [1]
    Pontryagin, L.S.:Ordinary differential equations, Addison-Wesley, 1962 (translated from the Russian).Google Scholar
  1009. [A1]
    Ince, E.L.:Ordinary differential equations, Dover, reprint, 1956.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. Hazewinkel

There are no affiliations available

Personalised recommendations