Models for Reaction Dynamics in Glasses

  • A. Blumen
  • J. Klafter
  • G. Zumofen
Part of the Physic and Chemistry of Materials with Low-Dimensional Structures book series (PCMC, volume 1)

Abstract

Glasses differ from crystals in that they lack long-range spatial order. Furthermore, due to their high viscosities, glasses are less favorable to the internal rearrangements displayed by liquids. Hence glasses show a multitude of microscopic patterns around each site (microenvironments), which may relax on widely different time scales. Any local probe of the glass structure, be it an elementary particle (neutron), a trapped charge carrier (electron or hole) or an impurity (ion or sensibilizing molecule) senses not only the different geometry of its surroundings, but, because of it, also changes in the local potentials. These may then reflect themselves in the rates of the processes under investigation. Thus geometrical disorder also implies energetic and temporal disorder. On the other hand, the long lifetime of the local microenvironments precludes an efficient internal averaging; in glasses one is forced to deal with the full complexity of a disordered medium.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. W. Anderson in Ill-Condensed Matter (eds R. Balian, R. Maynard and G. Toulouse), North Holland, Amsterdam (1979), p. 162.Google Scholar
  2. 2.
    T. S. Kuhn, The Structure of Scientific Revolutions (2nd edn), Univ. of Chicago Press, Chicago (1970).Google Scholar
  3. 3.
    B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1982).Google Scholar
  4. 4.
    K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press (1985).Google Scholar
  5. 5.
    H. Scher and M. Lax, Phys. Rev. B7, 4491 (1973).Google Scholar
  6. 6.
    H. Scher and M. Lax, Phys. Rev. B7, 4502 (1973).Google Scholar
  7. 7.
    H. Scher and E. W. Montroll, Phys. Rev. B12, 2455 (1975).Google Scholar
  8. 8.
    G. Pfister and H. Scher, Adv. Phys. 27, 747 (1978).Google Scholar
  9. 9.
    E. W. Montroll and M. F. Schlesinger in Nonequilibrium Phenomena II: From Stochastics to Hydrodynamics (eds J. L. Lebowitz and E. W. Montroll), North Holland, Amsterdam (1984).Google Scholar
  10. 10.
    N. Bourbaki, Eléments de mathématique, Topologie générale, Chap. IX, CCLS, Paris (1974).Google Scholar
  11. 11.
    A. D. Gordon, Classification, Chapman and Hall, London (1981).Google Scholar
  12. 12.
    W. H. Schikhof, Ultrametric Calculus, Cambridge Univ. Press (1984).Google Scholar
  13. 13.
    S. Kirkpatrick, Rev. Modern Phys. 45, 574 (1973).Google Scholar
  14. 14.
    J. W. Essam, Rep. Progr. Phys. 43, 843 (1980); H. Kesten, Percolation Theory for Mathematicians, Birkhäuser, Boston ( 1982).Google Scholar
  15. 15.
    G. Deutscher, R. Zallen, and J. Adler (eds), Percolation Structures and Processes, Ann. Isr. Phys. Soc. Vol. 5, Hilger, Bristol (1983).Google Scholar
  16. 16.
    D. Stauffer, Introduction to Percolation Theory, Taylor and Francis, London (1985).Google Scholar
  17. 17.
    J. L. van Hemmen and I. Morgenstern, ‘Heidelberg Colloquium on Spin Glasses’, Lect. Notes in Phys. 192, Springer, Berlin (1983).Google Scholar
  18. 18.
    J. Laidler, Chemical Kinetics, McGraw-Hill, New York (1950).Google Scholar
  19. 19.
    H. Eyring, S. H. Lin, and S. M. Lin, Basic Chemical Kinetics, Wiley, New York (1980).Google Scholar
  20. 20.
    F. Wilkinson, Chemical Kinetics and Reaction Mechanisms, Van Nostrand, New York (1980).Google Scholar
  21. 21.
    P. C. Jordan, Chemical Kinetics and Transport, Plenum, New York (1980).Google Scholar
  22. 22.
    J. W. Moore and R. G. Pearson, Kinetics and Mechanism, Wiley, New York (1981).Google Scholar
  23. 23.
    A. Blumen, G. Zumofen and J. Klafter in Structure and Dynamics of Molecular Systems (eds R. Daudel et al.), Reidel, Dordrecht (1985), p. 71.Google Scholar
  24. 24.
    G. Zumofen, A. Blumen and J. Klafter, J. Chem. Phys. 82, 3198 (1985).Google Scholar
  25. 25.
    J. M. Smith, Chemical Engineering Kinetics, McGraw-Hill, Kogakusha, Tokyo (1981).Google Scholar
  26. 26.
    T. R. Waite, Phys. Rev. 107, 463 (1957); 107, 471 (1957).Google Scholar
  27. 27.
    J. Klafter and A. Blumen in Random Walks and their Applications in the Physical and Biological Sciences (eds M. F. Shlesinger and B. J. West), American Institute of Physics, New York (1984), p. 173.Google Scholar
  28. 28.
    P. W. Klymko and R. Kopelman, J. Phys. Chem. 87, 4565 (1983).Google Scholar
  29. 29.
    B. Ya. Balagurov and V. G. Vaks, Zh. Exp. Teor. Fiz. 65, 1939 (1973) [English transi.: Sov. Phys. JETP 38, 968 (1974)].Google Scholar
  30. 30.
    D. Toussaint and F. Wilczek, J. Chem. Phys. 78, 2642 (1983).Google Scholar
  31. 31.
    J. Friedrich and A. Blumen, Phys. Rev. B32, 1434 (1985).Google Scholar
  32. 32.
    R. Kohlrausch, Ann. Phys. (Leipzig) 12, 393 (1847).Google Scholar
  33. 33.
    G. Williams and D. C. Watts, Trans Faraday Soc. 66, 80 (1970); G. Williams, Adv. Polymer Sci. 33,59(1979).Google Scholar
  34. 34.
    J. Jäckie, Rep. Prog. Phys. (in press).Google Scholar
  35. 35.
    A. K. Jonscher, Nature 267, 673 (1977).Google Scholar
  36. 36.
    K. L. Ngai Comments Solid State Phys. 9 127 1979; 9, 141 (1980Google Scholar
  37. 37.
    A. A. Jones, J. F. O’Gara, P. T. Inglefield, J. T. Bendler, A. F. Yee, and K. L. Ngai, Macromolec. 16, 658 (1983).Google Scholar
  38. 38.
    G. D. Patterson, Adv. Polym. Sci. 48, 125 (1983).Google Scholar
  39. 39.
    G. Fytas, T. Dorfmüller, and C. H. Wang, J. Phys. Chem. 87, 5041 (1983).Google Scholar
  40. 40.
    G. Fytas, A. Patkowski, G. Meier, and T. Dorfmüller, J. Chem. Phys. 80, 2214(1984).Google Scholar
  41. 41.
    R. Richert and H. Bässler, Chem. Phys. Lett. 118, 235 (1985).Google Scholar
  42. 42.
    V. L. Vyazovkin, B. V. Bol’shakov, and V. A. Tolkatchev, Chem. Phys. 75, 11(1983).Google Scholar
  43. 43.
    T. Doba, K. U. Ingold, and W. Siebrand, Chem. Phys. Lett. 103, 339 (1984).Google Scholar
  44. 44.
    A. Plonka, J. Kroh, W. Lefik, and W. Bogus, J. Phys. Chem. 83, 1807 (1979).Google Scholar
  45. 45.
    T. Förster, Z. Naturf. A4, 321 (1949).Google Scholar
  46. 46.
    M. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1978 (1965).Google Scholar
  47. 47.
    D. Rehm and K. B. Eisenthal, Chem. Phys. Lett. 9, 387 (1971).Google Scholar
  48. 48.
    F. K. Fong (ed), Radiationless Processes in Molecules and Condensed Phases, Top. Appl. Phys. 15, Springer, Berlin (1976); W. M. Yen and P. M. Selzer (eds), Laser Spectroscopy in Solids, Springer, Berlin (1981); W. M. Yen, this volume.Google Scholar
  49. 49.
    A. I. Burshtein, Usp. Fiz. Nauk 143, 553 (1984) [Sov. Phys. Usp. 27, 579 (1984)]; J. Lumin. 34, 167 (1985); 34, 201(1985).Google Scholar
  50. 50.
    K. Kemnitz, T. Murao, I. Yamazaki, N. Nakashima, and K. Yoshihara, Chem. Phys. Lett. 101, 337(1983).Google Scholar
  51. 51.
    F. Willig, A. Blumen, and G. Zumofen, Chem. Phys. Lett. 108, 222 (1984).Google Scholar
  52. 52.
    U. Even, K. Rademann, J. Jortner, N. Manor, and R. Reisfeld, Phys. Rev. Lett. 52, 2164 (1984).Google Scholar
  53. 53.
    J. R. Miller, Chem. Phys. Lett. 22, 180 (1973).Google Scholar
  54. 54.
    J. V. Beitz and J. R. Miller, J. Chem. Phys. 71, 4579 (1979).Google Scholar
  55. 55.
    H. A. Stoddart, M. Pollak and J. Tauc in Proc. 17th Int. Conf. Phys. Semicond. (eds J. D. Chadi and W. A. Harrison), Springer, New York (1985).Google Scholar
  56. 56.
    A. Blumen, Nuovo Cimenta B63, 50 (1981).Google Scholar
  57. 57.
    J. R. Morgan and M. A. El-Sayed, J. Phys. Chem. 87, 2178 (1983).Google Scholar
  58. 58.
    J. Friedrich and D. Haarer, Angew. Chemie Int. Ed. Engl. 23, 113 (1984); see also this volume.Google Scholar
  59. 59.
    W. Breinl, J. Friedrich, and D. Haarer, J. Chem. Phys. 81, 3915 (1984).Google Scholar
  60. 60.
    J. Taue, Semicond. and Semimetals 21B, 299 (1984).Google Scholar
  61. 61.
    P. Evesque, J. Physique (Paris) 44, 1227 (1983).Google Scholar
  62. 62.
    P. Argyrakis and R. Kopelman, J. Chem. Phys. 83, 3099 (1985) and references therein.Google Scholar
  63. 63.
    G. H. Weiss, Separation Sci. Techn. 17, 1609 (1982–83).Google Scholar
  64. 64.
    R. G. Palmer, D. L. Stein, E. Abrahams, and P. W. Anderson, Phys. Rev. Lett. 53, 958 (1984).Google Scholar
  65. 65.
    D. L. Dexter, J. Chem. Phys. 21, 836 (1953).Google Scholar
  66. 66.
    D. L. Huber in Laser Spectroscopy in Solids (eds W. M. Yen and P. M. Selzer), Springer, Berlin (1981), p. 85.Google Scholar
  67. 67.
    S. I. Golubov and Yu. V. Konobeev, Fiz. Tverd. Tela 13, 3185 (1971) [Engl. trans. Sov. Phys. SolidState 13, 2679 (1972)].Google Scholar
  68. 68.
    V. P. Sakun, Fiz. Tverd. Tela 14, 2199 (1972) [Engl. trnasl. Sov. Phys. Solid State 14, 1906 (1973)].Google Scholar
  69. 69.
    D. L. Huber, D. S. Hamilton, and B. Barnett, Phys. Rev. B16, 4642 (1977).Google Scholar
  70. 70.
    A. Blumen and J. Manz, J. Chem. Phys. 71, 4694 (1979).Google Scholar
  71. 71.
    A. Blumen, J. Chem. Phys. 74, 6926 (1981).Google Scholar
  72. 72.
    H. Kellerer and A. Blumen, Biophys. J. 46, 1 (1984).Google Scholar
  73. 73.
    I. M. Rozman, Izv. Akad. Nauk SSSR Ser. Fiz. 36, 922 (1972) [Engl. transi. Bull. Acad. Sci. USSR Phys. Ser. 36, 833 (1972)].Google Scholar
  74. 74.
    J. Klafter and A. Blumen, Chem. Phys. Lett. 119, 377 (1985).Google Scholar
  75. 75.
    A. Blumen, J. Chem. Phys. 72, 2632 (1980).Google Scholar
  76. 76.
    A. Blumen, J. Klafter, and G. Zumofen, J. Chem. Phys. 84, 6679 (1986).Google Scholar
  77. 77.
    C. L. Yang, P. Evesque, and M. A. El-Sayed, J. Phys. Chem. 89, 3442 (1985).Google Scholar
  78. 78.
    B. B. Mandelbrot, Les objets fractals: forme, hasard et dimension, Flammarion, Paris (1975).Google Scholar
  79. 79.
    W. Sierpinski, Compt. Rend. (Paris) 160, 302 (1915); 162, 629 (1916); Oeuvres Choisies (S. Hartman et al.), Editions Scientifiques, Warsaw (1974).Google Scholar
  80. 80.
    P. Urysohn, Veh. Koning. Akad. Wetensch. (Amsterdam) 1. Sect. 13, 4 (1927).Google Scholar
  81. 81.
    S. Alexander and R. Orbach, J. Phys. Lett. 43, L625 (1982).Google Scholar
  82. 82.
    P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena, Wiley, London (1977).Google Scholar
  83. 83.
    D. Dhar, J. Math. Phys. 18, 577 (1977).Google Scholar
  84. 84.
    D. Dhar, J. Math. Phys. 19, 5 (1978).Google Scholar
  85. 85.
    R. Rammal and G. Toulouse, J. Phys. Lett. 44, L13 (1983).Google Scholar
  86. 86.
    S. HavlmandD Ben-Avraham, J. Phys. A15, L311 (1982).Google Scholar
  87. 87.
    M. E. Cates, Phys. Rev. Lett. 53, 926 (1984).Google Scholar
  88. 88.
    M. Muthukumar, J. Chem. Phys. 83, 3161 (1985).Google Scholar
  89. 89.
    P. Pfeifer and D. Avnir, J. Chem. Phys. 79, 3558 (1983).Google Scholar
  90. 90.
    J. M. Drake and J. Klafter, J. Lumin. 31-32, 642 (1984).Google Scholar
  91. 91.
    W. D. Dozier, J. M. Drake, J. Klafter, and P. M. Chaikin (to be published).Google Scholar
  92. 92.
    S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg, Phys. Rev. B28, 4615 (1983).Google Scholar
  93. 93.
    T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).Google Scholar
  94. 94.
    T. A. Witten and L. M. Sander, Phys. Rev. B27, 5686 (1983).Google Scholar
  95. 95.
    F. Family and D. P. Landau (eds), Kinetics of Aggregation and Gelation, North Holland, Amsterdam (1984).Google Scholar
  96. 96.
    J. Klafter and A. Blumen, J. Chem. Phys. 80, 875 (1984).Google Scholar
  97. 97.
    H. Hilferand A. Blumen, J. Phys. A17, L537;L783 (1984).Google Scholar
  98. 98.
    R. Hilfer and A. Blumen, in Fractals in Physics (eds. L. Pietronero and E. Tossatti), North Holland, Amsterdam (1986) p. 33.Google Scholar
  99. 99.
    H. E. Stanley, J. Stat. Phys. 36, 843 (1984).Google Scholar
  100. 100.
    J. A. Given and B. B. Mandelbrot, J. Phys. A16, L565 (1983).Google Scholar
  101. 101.
    A. Maritan and A. L. Stella, in Fractals in Physics (eds. L. Pietronero and E. Tossatti), North Holland, Amsterdam (1986) p. 107.Google Scholar
  102. 102.
    M. N. Barber and B. W. Ninham, Random and Restricted Walks, Gordon and Breach, New York (1970).Google Scholar
  103. 103.
    G. H. Weiss and R. J. Rubin, ‘Random Walks: Theory and Selected Applications’, Adv. Chem. Phys. 52, 363 (1983).Google Scholar
  104. 104.
    Papers presented at the Symposium on Random Walks, J. Stat. Phys. 30, No. 2 (1983).Google Scholar
  105. 105.
    M. F. Shlesinger and B. J. West (eds), Random Walks and their Applications in the Physical and Biological Sciences, Amer. Inst. Phys., New York (1984).Google Scholar
  106. 106.
    G. Zumofen and A. Blumen, Chem. Phys. Lett. 88, 63 (1982).Google Scholar
  107. 107.
    H. E. Stanley, K. Kang, S. Redner, and R. L. Blumberg, Phys. Rev. Lett. 51, 1223 (1983).Google Scholar
  108. 108.
    K. Kang and S. Redner, Phys. Rev. Lett. 52, 955 (1984).Google Scholar
  109. 109.
    R. Kopelman, P. W. Klymko, J. S. Newhouse, and L. W. Anacker, Phys. Rev. B29, 3747 (1984).Google Scholar
  110. 110.
    J. Klafter, A. Blumen and G. Zumofen, J. Phys. Chem. 87,191 (1983).Google Scholar
  111. 111.
    E. W. Montroll and J. T. Bendler, J. Stat. Phys. 34, 129 (1984).Google Scholar
  112. 112.
    M. F. Shlesinger and E. W. Montroll, Proc. Natl. Acad. Sci. USA 81, 1280 (1984).Google Scholar
  113. 113.
    S. Redner and K. Kang, J. Phys. A17, L451 (1984).Google Scholar
  114. 114.
    A. Blumen, G. Zumofen, and J. Klafter, Phys. Rev. B30, 5379 (1984).Google Scholar
  115. 115.
    A. Blumen, G. Zumofen, and J. Klafter, J. Physique Colloque, Tome 46, C7–3 (1985).Google Scholar
  116. 116.
    A. Blumen and G. Zumofen, J. Chem. Phys. 75, 892 (1981).Google Scholar
  117. 117.
    G. Zumofen and A. Blumen, J. Chem. Phys. 76, 3173 (1982).Google Scholar
  118. 118.
    H. B. Rosenstock, Phys. Rev. 187, 1166 (1969); SIAMJ. Appl. Math. 27, 457 (1974).Google Scholar
  119. 119.
    G. H. Weiss, Proc. Natl. Acad. Sci. USA 77, 4391 (1980).Google Scholar
  120. 120.
    P. G. de Gennes, C. R. Acad (Paris) Ser II, 296, 881 (1983).Google Scholar
  121. 121.
    B. Movaghar, G. Sauer, D. Würtz, and D. L. Huber, Solid State Commun. 39, 1179 (1981) and J. Stat. Phys. 27, 473 (1982).Google Scholar
  122. 122.
    S. Redner and K. Kang, Phys. Rev. Lett. 51, 1729 (1983).Google Scholar
  123. 123.
    J. K. Anlauf, Phys. Rev. Lett. 52, 1845 (1984).Google Scholar
  124. 124.
    M. D. Donsker and S. R. S. Varadhan, Comm. Pure Appl. Math. 28, 525 (1975) and 32, 721 (1979).Google Scholar
  125. 125.
    P. Grassberger and I. Procaccia, J. Chem. Phys. 77, 628 (1982).Google Scholar
  126. 126.
    R. F. Kayser and J. B. Hubbard, Phys. Rev. Lett. 51, 6281 (1982).Google Scholar
  127. 127.
    J. Klafter, G. Zumofen, and A. Blumen, J. Physique Lett. 45, L49 (1984).Google Scholar
  128. 128.
    G. Zumofen, A. Blumen, and J. Klafter, J. Phys. A17, L479 (1984).Google Scholar
  129. 129.
    S. Havlin, M. Dishon, J. E. Kiefer, and G. H. Weiss, Phys. Rev. Lett. 53, 407 (1984).Google Scholar
  130. 130.
    G. Zumofen, A. Blumen, and J. Klafter, ‘Random Walks on Fractals’ in Structure and Dynamics of Molecular Systems (eds R. Daudel, J. P. Korb, J. P. Lemaistre, and J. Maruani), Reidel, Dordrecht (1985), p. 87.Google Scholar
  131. 131.
    E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).Google Scholar
  132. 132.
    S. H. Glarum, J. Chem. Phys. 33, 639 (1960).Google Scholar
  133. 133.
    P. Bordewijk, Chem. Phys. Lett. 32, 592 (1975).Google Scholar
  134. 134.
    J. E. Shore and R. Zwanzig, J. Chem. Phys. 63, 5445 (1975).Google Scholar
  135. 135.
    J. L. Skinner, J. Chem. Phys. 79, 1955 (1983).Google Scholar
  136. 136.
    S. Alexander, Ann. Isr. Phys. Soc. 5, 149 (1983) (ref. 15).Google Scholar
  137. 137.
    R. Orbach, J. Stat. Phys. 36, 735 (1984).Google Scholar
  138. 138.
    S. Alexander, O. Entin-Wohlman, and R. Orbach, J. Physique Lett. 46, L549 (1985).Google Scholar
  139. 139.
    S. Alexander, O. Entin-Wohlman, and R. Orbach, J. Physique Lett. 46, L555 (1985).Google Scholar
  140. 140.
    A. Blumen, J. Klafter, and G. Zumofen, Phys. Rev. B28, 6112 (1983).Google Scholar
  141. 141.
    J. Klafter, A. Blumen, and G. Zumofen, J. Stat. Phys. 36, 561 (1984).Google Scholar
  142. 142.
    I. M. Lifshitz, Adv. Phys. 13, 483 (1964).Google Scholar
  143. 143.
    D. Bedeaux, K. Lakatos-Lindenberg, and K. E. Shuler, J. Math. Phys. 12, 2116 (1971).Google Scholar
  144. 144.
    V. Kenkre, E. Montroll, and M. Shlesinger, J. Stat. Phys. 9, 45 (1973).Google Scholar
  145. 145.
    V. Kenkre and R. Knox, Phys. Rev. B9, 5279 (1974).Google Scholar
  146. 146.
    J. Klafter and R. Silbey, J. Chem. Phys. 72, 843 (1980).Google Scholar
  147. 147.
    J. Klafter and R. Silbey, Phys. Rev. Lett. 44, 55 (1980).Google Scholar
  148. 148.
    A. Blumen and G. Zumofen, J. Chem. Phys. 77, 5127(1982).Google Scholar
  149. 149.
    K. L. Ngai and F. S. Liu, Phys. Rev. B24, 1049 (1981).Google Scholar
  150. 150.
    M. F. Shlesinger, J. Stat. Phys. 36, 639 (1984).Google Scholar
  151. 151.
    A. Blumen, J. Klafter, and G. Zumofen, in Fractals in Physics (eds. L. Pietronero and E. Tossatti), North Holland, Amsterdam (1986) p. 399.Google Scholar
  152. 152.
    M. F. Shlesinger, J. Stat. Phys. 10, 421 (1974).Google Scholar
  153. 153.
    A. Blumen, J. Klafter, B. S. White, and G. Zumofen, Phys. Rev. Lett. 53, 1301 (1984).Google Scholar
  154. 154.
    G. Zumofen, J. Klafter, and A. Blumen, J. Chem. Phys. 79, 5131 (1983).Google Scholar
  155. 155.
    E. W. Montroll, J. Phys. Sot: Japan Suppl. 26, 6 (1969).Google Scholar
  156. 156.
    H. Scher, J. Physique Coll. 42, C4–547 (1981).Google Scholar
  157. 157.
    A. Blumen, J. Klafter, and G. Zumofen, J. Phys. A19, L77 (1986).Google Scholar
  158. 158.
    S. Grossmann, F. Wegner, and K. H. Hoffmann, J. Physique Lett. 46, L575 (1985).Google Scholar
  159. 159.
    A. T. Ogielski and D. L. Stein, Phys. Rev. Lett. 55, 1634 (1985).Google Scholar
  160. 160.
    B. A. Huberman and M. Kerszberg, J. Phys. A18, L331 (1985).Google Scholar
  161. 161.
    D. C. Torney and H. M. McConnell, Proc. Roy. Soc. London A387, 147(1983).Google Scholar
  162. 162.
    D. C. Torney and H. M. McConnell, J. Phys. Chem. 87, 1941 (1983).Google Scholar
  163. 163.
    A. A. Ovchinnikov and Ya. B. Zel’dovich, Chem. Phys. 28, 215 (1978).Google Scholar
  164. 164.
    P. Meakin and H. E. Stanley, J. Phys. A17, L173 (1984).Google Scholar
  165. 165.
    G. Zumofen, A. Blumen, and J. Klafter, Ber. Runs. Gesell, (in press).Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • A. Blumen
    • 1
  • J. Klafter
    • 2
  • G. Zumofen
    • 3
  1. 1.Max-Planck Institut für Polymerforschung, D-6500 Mainz and Lehrstuhl für Theoretische ChemieTechnische UniversitätGarchingWest Germany
  2. 2.Corporate Research Science LaboratoriesExxon Research and Engineering Company, Clinton TownshipAnnandaleUSA
  3. 3.Laboratorium für Physikalische Chemie, ETH-ZentrumZürichSwitzerland

Personalised recommendations