Metabolic processes in adventitious rooting of cuttings

  • Bruce E. Haissig
Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 20)

Abstract

A cutting is in a thermodynamically unfavourable state from the time it is prepared [1]. Part of the physical and physiological support, the root system, is gone. Only a new root system can restore ‘whole plant’ thermodynamics and sustain life. Altered metabolism in a cutting regenerates the root system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehninger, A.L. (1970) Biochemistry. Worth Publishers, Inc., New York.Google Scholar
  2. 2.
    Thorpe, T.A. (1982) Callus organization and de novo formation of shoots, roots and embryos in vitro. In Application of Plant Cell and Tissue Culture to Agriculture & Industry (eds. D.T. Tomes, B.E. Ellis, P.M. Harney, K.J. Kasha & R.L. Peterson), pp. 115–138. Plant Cell Culture Centre, University of Guelph, Ontario, Canada.Google Scholar
  3. 3.
    Haissig, B.E. (1974) Metabolism during adventitious root primordium initiation and development. New Zealand Journal of Forest Science, 4, 324–337.Google Scholar
  4. 4.
    Zobel, R.W. (1975) The genetics of root development. In The Development and Function of Roots (eds J.G. Torrey & D.T. Clarkson), pp. 261–275. Academic Press, London, New York, San Francisco.Google Scholar
  5. 5.
    Haissig, B.E. (1974) Origins of adventitious roots. New Zealand Journal of Forest Science, 4, 299–310.Google Scholar
  6. 6.
    Lewis, D.H. (1980) Boron, lignification and the origin of vascular plants — a unified hypothesis. The New Phytologist, 84, 209–229.Google Scholar
  7. 7.
    Esau, K. (1965) Plant Anatomy. Second Edition, John Wiley & Sons, New York, London, Sydney.Google Scholar
  8. 8.
    Sutton, R.F. & Tinus, R.W. (1983) Root and root system terminology. Monograph 24, Supplement to Forest Science, 29, 1–137.Google Scholar
  9. 9.
    McCully, M.E. (1975) The development of lateral roots. In The Development and Function of Roots (eds J.G. Torrey & D.T. Clarkson), pp. 105–124. Academic Press, London, New York, San Francisco.Google Scholar
  10. 10.
    Thorpe, T.A. (1980) Organogenesis in vitro: structural, physiological, and biochemical aspects. In International Review of Cytology (ed I.K. Vasil), Supplement 11 A, pp. 71-111. Academic Press, London, New York, San Francisco.Google Scholar
  11. 11.
    Gaspar, T. (1980) Rooting and flowering, two antagonistic phenomena from a hormonal point of view. In Aspects and Prospects of Plant Growth Regulators, Monograph 6 (ed B. Jeffcoat), pp. 39–49. British Plant Growth Regulator Group, Wantage.Google Scholar
  12. 12.
    Wample, R.L. & Reid, D.M. (1975) Effect of aeration on the flood-induced formation of adventitious roots and other changes in sunflower (Helianthus annuus L.). Planta, 127, 263–270.Google Scholar
  13. 13.
    Tang, Z.C. & Kozlowski, T.T. (1982) Physiological, morphological and growth responses of Platanus occidentalis seedlings to flooding. Plant and Soil, 66, 243–255.Google Scholar
  14. 14.
    Haissig, B.E. (1983) N-phenyl indolyl-3-butyramide and phenyl indole-3-thiolobutyrate enhance adventitious root primordium development. Physiologia Plantarum, 57, 435–440.Google Scholar
  15. 15.
    Mitsuhashi-Kato, M., Shibaoka, H. & Shimokoriyama, M. (1978) Anatomical and physiological aspects of developmental processes of adventitious root formation in Azukia cuttings. Plant & Cell Physiology, 19, 393–400.Google Scholar
  16. 16.
    Mitsuhashi-Kato, M., Shibaoka, H. & Shimokoriyama, M. (1978) The nature of the dual effect of auxin on root formation in Azukia cuttings. Plant & Cell Physiology, 19, 1535–1542.Google Scholar
  17. 17.
    Haissig, B.E. (1983) The rooting stimulus in pine cuttings. Proceedings of the International Plant Propagators Society, 32, 625–638.Google Scholar
  18. 18.
    Haddon, L.E. & Northcote, D.H. (1975) Quantitative measurement of the course of bean callus differentiation. Journal of Cell Science, 17, 11–26.PubMedGoogle Scholar
  19. 19.
    Friedman, R., Altman, A. & Zamski, E. (1979) Adventitious root formation in bean hypocotyl cuttings in relation to IAA translocation and hypocotyl anatomy. Journal of Experimental Botany, 30, 767–777.Google Scholar
  20. 20.
    Montain, C.R., Haissig, B.E. & Curtis, J.D. (1983) Initiation of adventitious root primordia in very young Pinus banksiana seedling cuttings. Canadian Journal of Forest Research, 13, 191–195.Google Scholar
  21. 21.
    Montain, C.R., Haissig, B.E. & Curtis, J.D. (1983) Differentiation of adventitious root primordia in callus of Pinus banksiana seedling cuttings. Canadian Journal of Forest Research, 13, 195–200.Google Scholar
  22. 22.
    Nanda, K.K. (1975) Physiology of adventitious root formation. Indian Journal of Plant Physiology, 18, 80–89.Google Scholar
  23. 23.
    Nanda, K.K. (1979) Adventitious root formation in stem cuttings in relation to hormones and nutrition. In Recent Researches in Plant Sciences (ed S.S. Bir), pp. 461–492. Kalyani Publishers, New Delhi.Google Scholar
  24. 24.
    Gaspar, T., Smith, D. & Thorpe, T. (1977) Arguments supplementaries en faveur d’une variation inverse du niveau auxinique endogène au cours des deux premieres phases de la rhizogéèse. Comptus Rendus Académie des Sciences (Paris), 285, 327–330.Google Scholar
  25. 25.
    Haissig, B.E. (1970) Influence of indole-3-acetic acid on adventitious root primordia of brittle willow. Planta, 95, 27–35.Google Scholar
  26. 26.
    Fowler, M.W. (1975) Carbohydrate metabolism and differentiation in seedling roots. The New Phytologist, 75, 461–478.Google Scholar
  27. 27.
    Audus, L.J. (1959) Plant Growth Substances. Interscience Publishers, Inc., New York.Google Scholar
  28. 28.
    Hardwick, R.C. (1979) Leaf abscission in varieties of Phaseolus vulgaris (L.) and Glycine max (L.) Merrill — a correlation with propensity to produce adventitious roots. Journal of Experimental Botany, 30, 795–804.Google Scholar
  29. 29.
    Locy, R.D. (1983) Callus formation and organogenesis by explants of six Lycopersicon species. Canadian Journal of Botany, 61, 1072–1079.Google Scholar
  30. 30.
    Keyes, G.J., Collins, G.B. & Taylor, N.L. (1980) Genetic variation in tissue cultures of red clover. Theoretical and Applied Genetics, 58, 265–271.Google Scholar
  31. 31.
    Balestrini, S. & Vartanian, N. (1983) Rhizogenic activity during water stress-induced senescence in Brassica napus var. oleifera. Physiologie Vegetale, 21, 269–277.Google Scholar
  32. 32.
    Kauss, H. (1977) Biochemistry of osmotic regulation. International Review of Biochemistry. Plant Biochemistry II, 13, 119–140.Google Scholar
  33. 33.
    Rajagopal, V. & Andersen, A.S. (1980) Water stress and root formation in pea cuttings. I. Influence of the degree and duration of water stress on stock plants grown under two levels of irradiance. Physiologia Plantarum, 48, 144–149.Google Scholar
  34. 34.
    Fischer, P. & Hansen, J. (1977) Rooting of chrysanthemum cuttings. Influence of irradiance during stock plant growth and of decapitation and disbudding of cuttings. Scientia Horticulturae, 7, 171–178.Google Scholar
  35. 35.
    Rajagopal, V. & Andersen, A.S. (1980) Water stress and root formation in pea cuttings. III. Changes in the endogenous level of abscisic acid and ethylene production in the stock plants under two levels of irradiance. Physiologia Plantarum, 48, 155–160.Google Scholar
  36. 36.
    Baadsmand, S. & Andersen, A.S. (1984) Transport and accumulation of indole-3-acetic acid in pea cuttings under two levels of irradiance. Physiologia Plantarum, 61, 107–113.Google Scholar
  37. 37.
    Stromquist, L.-H. & Eliasson, L. (1979) Light inhibition of rooting in Norway spruce (Picea abies) cuttings. Canadian Journal of Botany, 57, 1314–1316.Google Scholar
  38. 38.
    Leakey, R.R.B. (1983) Stockplant factors affecting root initiation in cuttings of Triplochiton scleroxylon K. Schum., an indigenous hardwood of West Africa. Journal of Horticultural Science, 58, 277–290.Google Scholar
  39. 39.
    Orton, P.J. (1979) The influence of water stress and abscisic acid on the root development of Chrysanthemum morifolium cuttings during propagation. Journal of Horticultural Science, 54, 171–180.Google Scholar
  40. 40.
    Gay, A.P. & Loach, K. (1977) Leaf conductance changes on leafy cuttings of Cornus and Rhododendron during propagation. Journal of Hortcultural Science, 52, 509–516.Google Scholar
  41. 41.
    Eliasson, L. (1978) Effects of nutrients and light on growth and root formation in Pisum sativum cuttings. Physiologia Plantarum, 43, 13–18.Google Scholar
  42. 42.
    Loach, K. (1977) Leaf water potential and the rooting of cuttings under mist and polythene. Physiologia Plantarum, 40, 191–197.Google Scholar
  43. 43.
    Davis, T.D. & Potter, J.R. (1983) High CO2 applied to cuttings: Effects on rooting and subsequent growth in ornamental species. HortScience, 18, 194–196.Google Scholar
  44. 44.
    Eliasson, L. & Brunes, L. (1980) Light effects on root formation in aspen and willow cuttings. Physiologia Plantarum, 48, 261–265.Google Scholar
  45. 45.
    Sivakumaran, S. & Hall, M.A. (1979) Hormones in relation to stress recovery in Populus robusta cuttings. Journal of Experimental Botany, 30, 53–63.Google Scholar
  46. 46.
    Davis, T.D. & Potter, J.R. (1981) Current photosynthate as a limiting factor in adventitious root formation on leafy pea cuttings. Journal of the American Society for Horticultural Science, 106, 278–282.Google Scholar
  47. 47.
    Veen, B.W. (1980) Energy cost of ion transport. In Genetic Engineering of Osmoregulation. Impact on Plant Productivity for Food, Chemicals & Energy, Volume 14, Basic Life Sciences (eds D.W. Raines, R.C. Valentine & A. Hollaender), pp. 187–195. Plenum Press, New York.Google Scholar
  48. 48.
    Suzuki, T. & Kohno, K. (1983) Changes in nitrogen levels and free amino acids in rooting cuttings of mulberry (Morus alba). Physiologia Plantarum, 59, 455–460.Google Scholar
  49. 49.
    Atkinson, D.E. (1969) Limitation of metabolite concentrations and the conservation of solvent capacity in the living cell. In Current Topics in Cellular Regulation (eds B.L. Horecker & E.R. Stadtman), pp. 29–43. Academic Press, London, New York, San Francisco.Google Scholar
  50. 50.
    Rozema, J., Buizer, A.G. & Fabritius, H.E. (1978) Population dynamics of Glaux maritima and ecophysiological adaptations to salinity and inundation. Oikos, 30, 539–548.Google Scholar
  51. 51.
    Boyer, J.S. & Meyer, R.F. (1980) Osmoregulation in plants during drought. In Genetic Engineering of Osmoregulation. Impact on Plant Productivity for Food, Chemicals & Energy, Volume 14, Basic Life Sciences (eds D.W. Raines, R.C. Valentine & A. Hollaender), pp. 199–202. Plenum Press, New York.Google Scholar
  52. 52.
    Steingrover, E. (1983) Storage of osmotically active compounds in the taproot of Daucus carota L. Journal of Experimental Botany, 34, 425–433.Google Scholar
  53. 53.
    Jefferies, R.L. (1980) The role of organic solutes in osmoregulation in halophytic higher plants. In Genetic Engineering of Osmoregulation. Impact on Plant Productivity for Food, Chemicals & Energy, Volume 14, Basic Life Sciences (eds D.W. Raines, R.C. Valentine & A. Hollaender), pp. 135-154. Plenum Press, New York.Google Scholar
  54. 54.
    Evans, H. (1952) Physiological aspects of the propagation of cacao from cuttings. Report of the Thirteenth International Horticultural Congress, 2, 1179–1190.Google Scholar
  55. 55.
    Zimmerman, P.W. (1930) Oxygen requirements for root growth of cuttings in water. American Journal of Botany, 17, 842–861.Google Scholar
  56. 56.
    Gislerød, H. (1982) Physical conditions of propagation media and their influence on the rooting of cuttings. I. Air content and oxygen diffusion at different moisture tensions. Plant and Soil, 69, 445–456.Google Scholar
  57. 57.
    Gislerod, H.R. (1983) Physical conditions of propagation media and their influence on the rooting of cuttings. III. The effect of air content and temperature in different propagation media on the rooting of cuttings. Plant and Soil, 75, 1–14.Google Scholar
  58. 58.
    Armstrong, W. (1979) Aeration in higher plants. Advances in Botanical Research, 7, 225–332.Google Scholar
  59. 59.
    Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J.D. (1983) Molecular Biology of the Cell. Garland Publishing Co., New York.Google Scholar
  60. 60.
    Pingel, U. (1976) Der Einfluss phenolischer Aktivatoren und Inhibitoren der IES-Oxydase-Aktivitat auf die Adventivbewurzelung bei Tradescantia albiflora. Zeitschrift für Pflanzenphysiologie, 79, 109–120.Google Scholar
  61. 61.
    Amoore, J.E. (1961) Arrest of mitosis in roots by oxygen-lack or cyanide. Proceedings of the Royal Society B, 154, 95–108.PubMedGoogle Scholar
  62. 62.
    Amoore, J.E. (1961) Dependence of mitosis and respiration in roots upon oxygen tension. Proceedings of the Royal Society B, 154, 109–129.Google Scholar
  63. 63.
    Eliasson L. (1981) Factors affecting the inhibitory effect of indolylacetic acid on root formation in pea cuttings. Physiologia Plantarum, 51, 23–26.Google Scholar
  64. 64.
    Kordan, H.A. (1976) Adventitious root initiation and growth in relation to oxygen supply in germinating rice seedlings. The New Phytologist, 76, 81–86.Google Scholar
  65. 65.
    Pearse, H.L. (1946) Rooting of vine and plum cuttings a (sic.) affected by nutrition of the parent plant and by treatment with phytohormones. Science Bulletin No. 249, Fruit Research: Technical Series No. 6, Department of Agriculture, Union of South Africa. 13 pp.Google Scholar
  66. 66.
    Haun, J.R. & Cornell, P.W. (1951) Rooting response of geranium (Pelargonium hortorum, Bailey var. Ricard) cuttings as influenced by nitrogen, phosphorus, and potassium nutrition of the stock plant. Proceedings of the American Society for Horticultural Science, 58, 317–323.Google Scholar
  67. 67.
    Pearse, H.L. (1943) The effect of nutrition and phytohormones on the rooting of vine cuttings. Annals of Botany, 7, 123–132.Google Scholar
  68. 68.
    Samish, R.M. & Spiegel, P. (1957) The influence of the nutrition of the mother vine on the rooting of cuttings. Katvim. Records of the Agricultural Research Station, Jewish Agency for Palestine, 8, 93–100.Google Scholar
  69. 69.
    Blazich, F.A., Wright, R.D. & Schaffer, H.E. (1983) Mineral nutrient status of ‘Convexa’ holly cuttings during intermittent mist propagation as influenced by exogenous auxin application. Journal of the American Society for Horticultural Science, 108, 425–429.Google Scholar
  70. 70.
    White, J.W. & Biernbaum, J. A. (1984) Effects of root-zone heating on elemental composition of Calceolaria. Journal of the American Society for Horticultural Science, 109, 350–355.Google Scholar
  71. 71.
    Good, G.L. & Tukey, H.B., Jr.. (1967) Redistribution of mineral nutrients in Chrysanthemum morifolium during propagation. Proceedings of the American Society for Horticultural Science, 90, 384–388.Google Scholar
  72. 72.
    Blazich, F.A. & Wright, R.D. (1979) Non-mobilization of nutrients during rooting of Ilex crenata Thunb. cv. Convexa stem cuttings. HortScience, 14, 242.Google Scholar
  73. 73.
    Gaspar, T., Penel, C., Thorpe, T. & Greppin, H. (1982) Peroxidases. Universite de Geneve, Centre de Botanique, Geneve.Google Scholar
  74. 74.
    Reuveni, O. & Raviv, M. (1980) Importance of leaf retention to rooting of avocado cuttings. Journal of the American Society for Horticultural Science, 106, 127–130.Google Scholar
  75. 75.
    Middleton, W., Jarvis, B.C. & Booth, A. (1978) The boron requirement for root development in stem cuttings of Phaseolus aureus Roxb. The New Phytologist, 81, 287–297.Google Scholar
  76. 76.
    Middleton, W., Jarvis, B.C. & Booth, A. (1980) The role of leaves in auxin and borondependent rooting of stem cuttings of Phaseolus aureus Roxb. The New Phytologist, 84, 251–259.Google Scholar
  77. 77.
    Jarvis, B.C. & Booth, A. (1981) Influence of indole-butyric acid, boron, myo-inositol, vitamin D2 and seedling age on adventitious root development in cuttings of Phaseolus aureus. Physiologia Plantarum, 53, 213–218.Google Scholar
  78. 78.
    Lewis, D.H. (1980) Are there inter-relations between the metabolic role of boron, synthesis of phenolic phytoalexins and the germination of pollen? The New Phytologist, 84, 261–270.Google Scholar
  79. 79.
    Veierskov, B., Andersen, A.S., Stummann, B.M. & Henningsen, K.W. (1982) Dynamics of extractable carbohydrates in Pisum sativum. II. Carbohydrate content and photosynthesis of pea cuttings in relation to irradiance and stock plant temperature and genotype. Physiologia Plantarum, 55, 174–178.Google Scholar
  80. 80.
    Moore, K.G., Illsley, A. & Lovell, P.H. (1975) The effects of temperature on root initiation in detached cotyledons of Sinapis alba L. Annals of Botany, 39, 657–669.Google Scholar
  81. 81.
    Veierskov, B. & Andersen, A.S. (1982) Dynamics of extractable carbohydrates in Pisum sativum. III. The effect of IAA and temperature on content and translocation of carbohydrates in pea cuttings during rooting. Physiologia Plantarum, 55, 179–182.Google Scholar
  82. 82.
    Ooishi, A., Machida, H., Hosoi, T. & Komatsu, H. (1978) Root formation and respiration of the cuttings under different temperatures. Journal of the Japanese Society of Horticultural Science, 47, 243–247.Google Scholar
  83. 83.
    Dykeman, B. (1976) Temperature relationship in root initiation and development of cuttings. Proceedings of the International Plant Propagators Society, 26, 201–207.Google Scholar
  84. 84.
    Haissig, B.E. (1984) Carbohydrate accumulation and partitioning in Pinus banksiana seedlings and seedling cuttings. Physiologia Plantarum, 61, 13–19.Google Scholar
  85. 85.
    Strydom, D.K. & Hartmann, H.T. (1960) Effect of indolebutyric acid on respiration and nitrogen metabolism in Marianna 2624 plum softwood stem cuttings. Proceedings of the American Society for Horticultural Science, 76, 124–133.Google Scholar
  86. 86.
    Nanda, K.K., Bansal, G.L., Kochhar, V.K. & Bhattacharya, N.C. (1978) Effect of some metabolic inhibitors of oxidative phosphorylation on rooting of cuttings of Phaseolus mungo. Annals of Botany, 42, 659–663.Google Scholar
  87. 87.
    Nanda, K.K., Sethi, R. & Kumar, S. (1982) Some paradoxical effects of metabolic inhibitors in root initiation and floral bud initiation. Indian Journal of Plant Physiology, 25, 1–26.Google Scholar
  88. 88.
    Čiamporova, M. (1983) An ultrastructural study of reserve lipid mobilization in stem root primordia and (sic.) poplar. The New Phytologist, 95, 19–27.Google Scholar
  89. 89.
    Reuveni, O. & Adato, I. (1974) Endogenous carbohydrates, root promoters and root inhibitors in easy-and difficult-to-root date palm (Phoenix dactylifera L.) offshoots. Journal of the American Society for Horticultural Science, 99, 361–363.Google Scholar
  90. 90.
    Veierskov, B., Hansen, J. & Andersen, A.S. (1976) Influence of cotyledon excision and sucrose on root formation in pea cuttings. Physiologia Plantarum, 36, 105–109.Google Scholar
  91. 91.
    Champagnol, F. (1981) Relation entre la formation de pousse et de racines par une bouture de vigne et la quantité d’amidon initialement présente. Comptus Rendus Académie des Sciences (Paris), 67, 1398–1405.Google Scholar
  92. 92.
    Nanda, K.K., Kochhar, V.K. & Gupta, S. (1972) Effects of auxins, sucrose and morphactin in the rooting of hypocotyl cuttings of Impatiens balsamina during different seasons. Biology Land Plant, 1972, 181–187.Google Scholar
  93. 93.
    Patrick, J.W. & Wareing, P.F. (1973) Auxin-promoted transport of metabolites in stems of Phaseolus vulgaris L. Some characteristics of the experimental transport systems. Journal of Experimental Botany, 24, 1158–1171.Google Scholar
  94. 94.
    Patrick, J.W. & Wareing, P.F. (1976) Auxin-promoted transport of metabolites in stems of Phaseolus vulgaris L. Effects at the site of hormone application. Journal of Experimental Botany, 27, 969–982.Google Scholar
  95. 95.
    Altman, A. & Wareing, P.F. (1975) The effect of IAA on sugar accumulation and basipetal transport of 14C-labelled assimilates in relation to root formation in Phaseolus vulgaris cuttings. Physiologia Plantarum, 33, 32–38.Google Scholar
  96. 96.
    Andersen, A.S., Hansen, J., Veierskov, B. & Eriksen, E.N. (1975) Stock plant conditions and root initiation on cuttings. Acta Horticulturae, 54, 33–37.Google Scholar
  97. 97.
    Haissig, B.E. (1982) Carbohydrate and amino acid concentrations during adventitious root primordium development in Pinus banksiana Lamb, cuttings. Forest Science, 28, 813–821.Google Scholar
  98. 98.
    Hansen, J. & Eriksen, E.N. (1974) Root formation of pea cuttings in relation to the irradiance of the stock plants. Physiologia Plantarum, 32, 170–173.Google Scholar
  99. 99.
    Veierskov, B. (1978) A relationship between length of basis and adventitious root formation in pea cuttings. Physiologia Plantarum, 42, 146–150.Google Scholar
  100. 100.
    Veierskov, B., Andersen, A.S. & Eriksen, E.N. (1982) Dynamics of extractable carbohydrates in Pisum sativum. I. Carbohydrate and nitrogen content of pea plants and cuttings grown at two different irradiances. Physiologia Plantarum, 55, 167–173.Google Scholar
  101. 101.
    Hansen, J., Strömquist, L.-H. & Ericsson, A. (1978) Influence of the irradiance on carbohydrate content and rooting of cuttings of pine seedlings (Pinus sylvestris L.). Plant Physiology, 61, 975–979.PubMedGoogle Scholar
  102. 102.
    Welander, T. (1978) Influence of nitrogen and sucrose in the medium and of irradiance of the stock plants on root formation in Pelargonium petioles grown in vitro. Physiologia Plantarum, 43, 136–141.Google Scholar
  103. 103.
    Lovell, P.H., Illsley, A. & Moore, K.G. (1974) Endogenous sugar levels and their effects on root formation and petiole yellowing of detached mustard cotyledons. Physiologia Plantarum, 31, 231–236.Google Scholar
  104. 104.
    Rozema, J. (1979) Population dynamics and ecophysiological adaptations of some coastal members of the Juncaceae and Gramineae. In Ecological Processes in Coastal Environments (eds R.L. Jefferies & A.J. Davy), pp. 229–241. Blackwell, Oxford.Google Scholar
  105. 105.
    Faludi, B., Daniel, A.F., Gyurjan, I. & Anda, S. (1963) Sugar antagonisms in plant tumor cells induced by 2,4-dichlorophenoxyacetic acid. Acta Biologica Academiae Scientianum Hunganicae, 14, 183–190.Google Scholar
  106. 106.
    Maretzki, A. & Hiraki, P. (1980) Sucrose promotion of root formation in plantlets regenerated from callus of Saccharum spp. Phyton, 38, 85–88.Google Scholar
  107. 107.
    Hyndman, S.E., Hasegawa, P.M. & Bressan, R.A. (1982) The role of sucrose and nitrogen in adventitious root formation on cultured rose shoots. Plant Cell Tissue Organ Culture, 1, 229–238.Google Scholar
  108. 108.
    Huber, S.C. (1983) Relation between photosynthetic starch formation and dry-weight partitioning between the shoot and root. Canadian Journal of Botany, 61, 2709–2716.Google Scholar
  109. 109.
    Ackerson, R.C. (1981) Osmoregulation in cotton in response to water stress. II. Leaf carbohydrate status in relation to osmotic adjustment. Plant Physiology, 67, 489–493. 110._Hartmann, H.T. & Kester, D.E. (1983) Plant Propagation. Prentice-Hall, New Jersey.Google Scholar
  110. 111.
    Fabijan, D., Yeung, E., Mukherjee I. & Reid, D.M. (1981) Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings. I. Correlative influences and developmental sequence. Physiologia Plantarum, 53, 578–588.Google Scholar
  111. 112.
    Breen, P.J. & Muraoka, T. (1973) Effect of indolebutyric acid on distribution of 14C-photosynthate in softwood cuttings of ‘Marianna 2624 ‘plum. Journal of the American Society for Horticultural Science, 98, 436–439.Google Scholar
  112. 113.
    Breen, P.J. & Muraoka, T. (1974) Effect of leaves on carbohydrate content and movement of 14C-assimilate in plum cuttings. Journal of the American Society for Horticultural Science, 99, 326–332.Google Scholar
  113. 114.
    Brossard, D. (1977) Root organogenesis from foliar discs of Crepis capillaris L. Wallr. cultured in vitro: Cytochemical and microspectrophotometric analysis. The New Phytologist, 79, 423–429.Google Scholar
  114. 115.
    Sawada, S., Igarashi, T. & Miyachi, S. (1983) Effects of phosphate nutrition on photosynthesis, starch and total phosphorus levels in single rooted leaf of dwarf bean. Photosynthetica, 17, 484–490.Google Scholar
  115. 116.
    Haissig, B.E. (1982) Activity of some glycolytic and pentose phosphate pathway enzymes during the development of adventitious roots. Physiologia Plantarum, 55, 261–272.Google Scholar
  116. 117.
    Bhattacharya, N.C., Parmar, S.S. & Nanda, K.K. (1976) Isoenzyme polymorphism of amylase and catalase in relation to rooting etiolated stem segments of Populus nigra. Biochemie und Physiologie der Pflanzen, 170, 133–142.Google Scholar
  117. 118.
    Punjabi, B. & Basu, R.N. (1978) Amylolytic activity in relation to adventitious root formation on stem cuttings. Indian Biologist, 10, 65–71.Google Scholar
  118. 119.
    Haissig, B.E. (1972) Meristematic activity during adventitious root primordium development. Plant Physiology, 49, 886–892.PubMedGoogle Scholar
  119. 120.
    Hyndman, S.E., Hasegawa, P.M. & Bressan, R.A. (1982) Stimulation of root initiation from cultured rose shoots through use of reduced concentrations of mineral salts. HortScience, 17, 82–83.Google Scholar
  120. 121.
    Welander, T. (1976) Effects of nitrogen, sucrose, IAA and kinetin on explants of Beta vulgaris grown in vitro. Physiologia Plantarum, 36, 7–10.Google Scholar
  121. 122.
    Haissig, B.E. (1974) Influences of auxins and auxin synergists on adventitious root primordium initiation and development. New Zealand Journal of Forest Science, 4, 311–323.Google Scholar
  122. 123.
    Klambt, D. (1983) Oligopeptides and plant morphogenesis: A working hypothesis. Journal of Theoretical Biology, 100, 435–441.Google Scholar
  123. 124.
    Bagni, N., Serafini Fracassini, D. & Torrigiani, P. (1981) Polyamines and growth in higher plants. Advances in Polyamine Research, 3, 377–388.Google Scholar
  124. 125.
    Tabor, C.W. & Tabor, H. (1984) Polyamines. Annual Review of Biochemistry, 53, 749–790.Google Scholar
  125. 126.
    White, A., Handler, P. & Smith, E.L. (1968) Principles of Biochemistry. McGraw-Hill, New York, Sydney, Toronto, London.Google Scholar
  126. 127.
    Friedman, R., Altman, A. & Bachrach, U. (1982) Polyamines and root formation in mung bean hypocotyl cuttings. I. Effects of exogenous compounds and changes in endogenous polyamine content. Plant Physiology, 70, 844–848.PubMedGoogle Scholar
  127. 128.
    Jarvis, B.C., Shannon, P.R.M. & Yasmin, S. (1983) Involvement of polyamines with adventitious root development in stem cuttings of mung bean. Plant & Cell Physiology, 24, 677–683.Google Scholar
  128. 129.
    Kaur-Sawhney, R., Flores, H.E. & Galston, A.W. (1980) Polyamine-induced DNA synthesis and mitosis in oat leaf protoplasts. Plant Physiology, 65, 368–371.PubMedGoogle Scholar
  129. 130.
    Mahler, H.R. & Cordes, E.H. (1966) Biological Chemistry. Harper & Row, Inc., New York.Google Scholar
  130. 131.
    Nanda, K.K., Bhattacharya, N.C. & Kochhar, V.K. (1974) Biochemical basis of adventitious root formation on etiolated stem segments. New Zealand Journal of Forest Science, 4, 347–358.Google Scholar
  131. 132.
    Ebrahimzadeh, H. & Amide, M. (1980) Évolution des protéines dans les fragments d’entrenoeuds de tige de Peperomia blanda H.B. & K. cultivés in vitro, au cours de la néoformation de racines et de bourgeons. Physiologie Végétale, 18, 405–410.Google Scholar
  132. 133.
    Malik, C.P. & Usha, K. (1977) Histochemical studies on the localization of metabolic reserves and enzymes during the initiation and formation of adventitious roots in Impaniens (sic.) balsamina Linn. New Botanist, 4, 113–124.Google Scholar
  133. 134.
    Bhattacharya, S. & Nanda, K.K. (1978) Stimulatory effect of purine and pyrimidine bases and their role in the mediation of auxin action through the regulation of carbohydrate metabolism during adventitious root formation in hypocotyl cuttings of Phaseolus mungo. Zeitschrift für Pflanzenphysiologie, 88, 283–293.Google Scholar
  134. 135.
    Jordan, M., Iturriaga, L. & Feucht, W. (1982) Effects of nitrogenous bases on root formation of hypocotyls from Prunus avium L. ‚Mericier ‘and ‚Bing ‘grown in vitro. Gartenbauwissenschaft, 47, 46–48.Google Scholar
  135. 136.
    Bhattacharya, S., Bhattacharya, N.C. & Nanda, K.K. (1976) Synergistic effect of ribose and 2-deoxy-ribose with nutrition and auxin in rooting hypocotyl cuttings of Phaseolus mungo. Plant & Cell Physiology, 17, 399–402.Google Scholar
  136. 137.
    Tripathi, R.K. & Schlosser, E. (1979) Effects of fungicides on the physiology of plants. II. Inhibition of adventitious root formation by carbendazim and kinetin. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 86, 12–17.Google Scholar
  137. 138.
    Kantharaj, G.R., Mahadevan, S. & Padmanaban, G. (1979) Early biochemical events during adventitious root initiation in the hypocotyl of Phaseolus vulgaris. Phytochemistry, 18, 383–387.Google Scholar
  138. 139.
    Mitsuhashi-Kato, M. & Shibaoka, H. (1981) Effects of actinomycin D and 2,4-dinitrophenol on the development of root primordia in azuki bean stem cuttings. Plant & Cell Physiology, 22, 1431–1436.Google Scholar
  139. 140.
    Oppenoorth, J.M. (1979) Influence of cycloheximide and actinomycin D on initiation and early development of adventitious roots. Physiologia Plantarum, 47, 134–138.Google Scholar
  140. 141.
    Blazich, F.A. & Heuser, C.W. (1981) Effects of selected putative inhibitors of ribonucleic acid or protein synthesis on adventitious root formation in mung bean cuttings. Journal of the American Society for Horticultural Science, 106, 8–11.Google Scholar
  141. 142.
    Jarvis, B.C., Shannon, P.R.M. & Yasmin, S. (1983) Influence of IBA and cordycepin on rooting and RNA synthesis in stem cuttings of Phaseolus aureus Roxb. Plant & Cell Physiology, 24, 139–146.Google Scholar
  142. 143.
    Sawhney, S., Sawhney, N. & Kohli, R.K. (1977) Synergistic effect of rifampicin and indole-3-acetic acid in root initiation on hypocotyl cuttings of Phaseolus mungo. Indian Journal of Plant Physiology, 20, 164–167.Google Scholar
  143. 144.
    Sawhney, S., Sawhney, N. & Kaur, R. (1981) Auxin-rifampicin interaction in adventitious root formation on hypocotyl cuttings of Phaseolus mungo. Indian Journal of Plant Physiology, 24, 199–205.Google Scholar
  144. 145.
    Dhaliwal, G., Bhattacharya, N.C. & Nanda, K.K. (1974) Promotion of rooting by cycloheximide on hypocotyl cuttings of Impatiens balsamina and associated changes in the pattern of isoperoxidases. Indian Journal of Plant Physiology, 17, 73–81.Google Scholar
  145. 146.
    Tripepi, R.R., Heuser, C.W. & Shannon, J.C. (1983) Incorporation of tritiated thymidine and uridine into adventitious-root initial cells of Vigna radiata. Journal of the American Society for Horticultural Science, 108, 469–474.Google Scholar
  146. 147.
    Nanda, K.K. & Bhattacharya, N.C. (1973) Electrophoretic separation of ribonucleic acids on polyacrylamide gels in relation to rooting of etiolated stem segments of Populus nigra. Biochemie und Physiologie der Pflanzen, 164, 632-635.Google Scholar
  147. 148.
    James, D.J. & Thurbon, I.J. (1981) Phenolic compounds and other factors controlling rhizogenesis in vitro in the apple rootstocks M.9 and M.26. Zeitschrift für Pflanzenphysiologie, 105, 11–20.Google Scholar
  148. 149.
    Zimmerman, R.H. & Broome, O.C. (1981) Phloroglucinol and in vitro rooting of apple cultivar cuttings. Journal of the American Society for Horticultural Science, 106, 648–652.Google Scholar
  149. 150.
    James, D.J. & Thurbon, I.J. (1981) Shoot and root initiation in vitro in the apple rootstock M.9 and the promotive effects of phloroglucinol. Journal of Horticultural Science, 56, 15–20.Google Scholar
  150. 151.
    James, D.J. (1983) Adventitious root formation ‚in vitro ‘in apple rootstocks (Malus pumila). I. Factors affecting the length of the auxin-sensitive phase in M.9. Physiologia Plantarum, 57, 149–153.Google Scholar
  151. 152.
    James, D.J. (1983) Adventitious root formation ‚in vitro ‘in apple rootstocks (Malus pumila) II. Uptake and distribution of indol-3yl-acetic acid during the auxin-sensitive phase in M.9 and M.26. Physiologia Plantarum, 57, 154–158.Google Scholar
  152. 153.
    James, D.J. (1979) The role of auxins and phloroglucinol in adventitious root formation in Rubus and Fragaria grown in vitro. Journal of Horticultural Science, 54, 273–277.Google Scholar
  153. 154.
    Fadl, M.S., Sari El-Deen, S.A. & El-Mahdy, M.A. (1979) Physiological and chemical factors controlling adventitious root initiation in carob Ceratonia siligua L. stem cuttings. Egyptian Journal of Horticulture, 6, 55–68.Google Scholar
  154. 155.
    Druart, P., Kevers, C, Boxus, P. & Gaspar, T. (1982) In vitro promotion of root formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Zeitschrift für Pflanzenphysiologie, 108, 429–436.Google Scholar
  155. 156.
    Lee, C.I. (1971) Influence of intermittent mist on the development of anthocyanins and rootinducing substances in Euonymus alatus Sieb. ‚Compactus‘. Ph.D. Dissertation, Cornell University.Google Scholar
  156. 157.
    Bachelard, E.P. & Stowe, B.B. (1962) A possible link between root initiation and anthocyanin formation. Nature, 194, 209–210.Google Scholar
  157. 158.
    Mosella Chancel, L., Macheix, J.-J. & Jonard, R. (1980) Les conditions du microbouturage in vitro de Pecher (Prunus persica Batsch): influences combinéers des substancés de croissance et de divers composes phSnoliques. Physiologie Végétale, 18, 597–608.Google Scholar
  158. 159.
    Dixon, M. & Webb, E.C. (1979) Enzymes. Third Edition, Academic Press, New York.Google Scholar
  159. 160.
    Vaughn, K.C. & Duke, S.O. (1984) Function of polyphenol oxidase in higher plants. Physiologia Plantarum, 60, 106–112.Google Scholar
  160. 161.
    Kaminski, C. (1971) Variations des activités peroxydasique et phénoloxydasique au cours de la croissance de Coleus blumeni Benth. var. Automne. Planta, 99, 63–72.Google Scholar
  161. 162.
    Dhawan, R.S. & Nanda, K.K. (1982) Stimulation of root formation on Impatiens balsamina L. cuttings by coumarin and the associated biochemical changes. Biologia Plantarum, 24, 177–182.Google Scholar
  162. 163.
    Bassuk, N.L. & Howard, B.H. (1981) Seasonal rooting changes in apple hardwood cuttings and their implications to nurserymen. Proceedings of the International Plant Propagators Society, 30, 289–293.Google Scholar
  163. 164.
    Habaguchi, K. (1977) Alterations in polyphenol oxidase activity during organ redifferentiation in carrot calluses cultured in vitro. Plant & Cell Physiology, 18, 181–189.Google Scholar
  164. 165.
    Habaguchi, K. (1977) A possible function of cyclic AMP in the induction of polyphenol oxidase preceding root formation in cultured carrot-root callus. Plant & Cell Physiology, 18, 191–198.Google Scholar
  165. 166.
    Habaguchi, K. (1979) Purification and some properties of polyphenol oxidase from root-forming carrot callus tissue. Plant & Cell Physiology, 20, 9–18.Google Scholar
  166. 167.
    Clark, S.K., Jr.. & Conroy, J.M. (1984) Homology of plant peroxidases: Relationships among acidic isoenzymes. Physiologia Plantarum, 60, 294–298.Google Scholar
  167. 168.
    Gaspar, T., Penel, C. & Greppin, H. (1975) Peroxidase and isoperoxidases in relation to root and flower formation. The Plant Biochemistry Journal, 2, 33–47.Google Scholar
  168. 169.
    Legrand, B., Gaspar, T., Penel, C. & Greppin, H. (1976) Light and hormonal control of phenolic inhibitors of peroxidase in Cichorium intybus L. The Plant Biochemistry Journal, 3, 119–127.Google Scholar
  169. 170.
    Legrand, B. (1977) Action de la lumière sur les peroxydases et sur la teneur en composés phénoliques de tissus de feuilles de Cichorium intybus L. cultivés in vitro. Biologia Plantarum, 19, 27–33.Google Scholar
  170. 171.
    Moncousin, C. & Gaspar, T. (1983) Peroxidase as a marker for rooting improvement of Cynara scolymus L. cultured in vitro. Biochemie und Physiologie der Pflanzen 178, 263–271.Google Scholar
  171. 172.
    Balasimha, D. & Subramonian, N. (1983) Role of phenolics in auxin induced rhizogenesis & isoperoxidases in cacao (Theobroma cacao L.) stem cuttings. Indian Journal of Experimental Biology, 21, 65–68.Google Scholar
  172. 173.
    Chandra, G.R., Gregory, L.E. & Worley, J.F. (1971) Studies on the initiation of adventitious roots on mung bean hypocotyl. Plant & Cell Physiology, 12, 317–324.Google Scholar
  173. 174.
    Chandra, G.R., Worley, J.F., Gregory, L.E. & Clark, H.D. (1973) Effect of 6-benzyladenine on the initiation of adventitious roots on mung bean hypocotyl. Plant & Cell Physiology, 14, 1209–1212.Google Scholar
  174. 175.
    Nanda, K.K., Bhattacharya, N.C. & Kaur, N.P. (1973) Effect of morphactin on peroxidases and its relationship to rooting hypocotyl cuttings of Impatiens balsamina. Plant & Cell Physiology, 14, 207–211.Google Scholar
  175. 176.
    Gurumurti, K. & Nanda, K.K. (1974) Changes in peroxidase isoenzymes of Phaseolus mungo hypocotyl cuttings during rooting. Phytochemistry, 13, 1089–1093.Google Scholar
  176. 177.
    Nanda, K.K., Bhattacharya, N.C. & Kaur, N.P. (1973) Disc electrophoretic studies of IAA oxidases and their relationship with rooting of etiolated stem segments of Populus nigra. Physiologia Plantarum, 29, 422–444.Google Scholar
  177. 178.
    Bhattacharya, N.C., Kaur, N.P. & Nanda, K.K. (1975) Transients in isoperoxidases during rooting of etiolated stem segments of Populus nigra. Biochemie und Physiologie der Pflanzen, 167, 159–164.Google Scholar
  178. 179.
    Bhattacharya, N.C, Bhattacharya, S. & Nanda, K.K. (1978) Isoenzyme polymorphism of peroxidase, IAA-oxidase, catalase and amylase in rooting etiolated stem segments of Salix tetrasperma. Biochemie und Physiologie der Pflanzen, 172, 439–452.Google Scholar
  179. 180.
    Thorpe, T.A., Tran Thanh Van, M. & Gaspar, T. (1978) Isoperoxidases in epidermal layers of tobacco and changes during organ formation in vitro. Physiologia Plantarum, 44, 388–394.Google Scholar
  180. 181.
    Ono, H., Masuda, C. & Nagayoshi, T. (1980) The formation of a root-specific isoperoxidase as an indicator of root primordium differentiation in pith of tobacco. Science Report of the Faculty of Agriculture, Kobe University, 14, 85–91.Google Scholar
  181. 182.
    Haissig, B.E. (1983) Influence of phenyl tryptophyl ether on adventitious root development in bean cuttings. Canadian Journal of Botany, 61, 1548–1549.Google Scholar
  182. 183.
    Gurumurti, K., Chibbar, R.N. & Nanda, K.K. (1973) Evidence for the mediation of indole 3-acetic acid effects through its oxidation products. Experimentia, 30, 997–998.Google Scholar
  183. 184.
    Tang, Y.W. & Bonner, J. (1947) The enzymatic inactivation of indoleacetic acid. I. Some characteristics of the enzyme contained in pea seedlings. Archives of Biochemistry, 13, 11–25.PubMedGoogle Scholar
  184. 185.
    Wagenknecht, A.C. & Burris, R.H. (1950) Indoleacetic acid inactivating enzymes from bean roots and pea seedlings. Archives of Biochemistry, 25, 30–53.PubMedGoogle Scholar
  185. 186.
    Kenten, R.H. (1955) 3-(3-indolyl)propionic acid and y-(3-indolyl)-n-butyric acid by peroxidase and Mn2+. Biochemistry Journal, 61, 353–354.Google Scholar
  186. 187.
    Waygood, E.R., Oaks, A. & Maclachlan, G.A. (1956) The enzymically catalyzed oxidation of indoleacetic acid. Canadian Journal of Botany, 34, 905–926.Google Scholar
  187. 188.
    Reinecke, D.M. & Bandurski, R.S. (1981) Metabolic conversion of,4C-indole-3-acetic acid to 14C-oxindole-3-acetic acid. Biochemical and Biophysical Research Communications, 103, 429–433.PubMedGoogle Scholar
  188. 189.
    Brennan, T. & Frenkel, C. (1983) Nonenzymatic oxidation of indole-3-acetic acid by H2O2 and Fe2+ ions. Botanical Gazette, 144, 32–36.Google Scholar
  189. 190.
    Gorst, J.R., Slaytor, M. & de Fossard, R.A. (1983) The effect of indole-3-butyric acid and riboflavin on the morphogenesis of adventitious roots of Eucalyptus flcifolia F. Muell. grown in vitro. Journal of Experimental Botany, 34, 1503–1515.Google Scholar
  190. 191.
    Cohen, J.D. & Bandurski, R.S. (1982) Chemistry and physiology of the bound auxins. Annual Review of Plant Physiology, 33, 403–430.Google Scholar
  191. 192.
    Epstein, E. (1982) Levels of free and conjugated indole-3-acetic acid in ethylene-treated leaves and callus of olive. Physiologia Plantarum, 56, 371–373.Google Scholar
  192. 193.
    Felker, P. & Clark, P.R. (1981) Rooting of mesquite (Prosopis) cuttings. Journal of Range Management, 34, 466–468.Google Scholar
  193. 194.
    Epstein, E., Kochba, J. & Neumann, H. (1977) Metabolism of indoleacetic acid by embryonic and non-embryonic callus lines of ‚Shamouti’ orange (Citrus sinensis Osb.). Zeitschrift für Pflanzenphysiologie, 85, 263–268.Google Scholar
  194. 195.
    Haissig, B.E. (1979) Influence of aryl esters of indole-3-acetic acid and indole-3-butyric acids on adventitious root primordium initiation and development. Physiologia Plantarum, 47, 29–33.Google Scholar
  195. 196.
    Frenkel, C. & Hess, C.E. (1974) Isozymic changes in relation to root initiation in mung bean. Canadian Journal of Botany, 52, 295–297.Google Scholar
  196. 197.
    Chibbar, R.N., Gurumurti, K. & Nanda, K.K. (1979) Changes in IAA oxidase activity in rooting hypocotyl cuttings of Phaseolus mungo L. Experimentia, 35, 202–203.Google Scholar
  197. 198.
    Brunner, H. (1978) Einfluss verschiedener Wuchsstoffe und Stoffwechselgifte auf wurzelregenerierendes Gewebe von Phaseolus vulgaris L. Veränderungen des Wuchsstoffgehaltes sowie der Peroxydase-und der IAA-Oxydase Aktivität. Zeitschrift für Pflanzenphysiologie, 88, 13–23.Google Scholar
  198. 199.
    Bansal, M.P. & Nanda, K.K. (1981) IAA oxidase activity in relation to adventitious root formation on stem cuttings of some forest tree species. Experimentia, 37, 1273–1274.Google Scholar
  199. 200.
    Chibbar, R.N., Gurumurti, K. & Nanda, K.K. (1980) Effect of maleic hydrazide on peroxidase isoenzymes in relation to rooting hypocotyl cuttings of Phaseolus mungo. Biologia Plantarum, 22, 1–6.Google Scholar
  200. 201.
    Quoirin, M., Boxus, P. & Gaspar, T. (1974) Root initiation and isoperoxidases of stem tip cuttings from mature Prunus plants. Physiologie Vegetale, 12, 165–174.Google Scholar
  201. 202.
    Van Hoof, P. & Gaspar, T. (1976) Peroxidase and isoperoxidase changes in relation to root initiation of Asparagus cultured in vitro. Scientia Horticulturae, 4, 27–31.Google Scholar
  202. 203.
    Lee, T.T. (1980) Effects of phenolic substances on metabolism of exogenous indole-3-acetic acid in maize stems. Physiologia Plantarum, 50, 107–112.Google Scholar

Copyright information

© Martinus Nijhoff Publishers, Dordrecht 1986

Authors and Affiliations

  • Bruce E. Haissig
    • 1
  1. 1.Forestry Sciences LaboratoryUSDA-Forest Service, North Central Forest Experiment StationRhinelanderUSA

Personalised recommendations