Advertisement

Abstract

In impression- and closed-die forging, two or more dies are moved towards each other to form a metal billet, at a suitable temperature, to the shape given by the die impressions. The physical phenomena that occur during forging are highly complex and interdependent. It is therefore useful to review here the variables of the forging process and their interactions before actually discussing the problem of forging dies.

Keywords

Flow Stress Metal Flow Numerical Control Machine Spiral Bevel Gear Frictional Shear Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altan, T., Oh, S. and Gegel, H. Metal Forming: Fundamentals and Applications, American Society of Metals, Metals Park, Ohio, 1983.Google Scholar
  2. 2.
    Altan, T. and Nagpal, V. Recent developments in closed die forging, Int. Metallurgical Reviews, (Dec. 1976), 322.Google Scholar
  3. 3.
    Sabroff, A. M. et al. Forging Materials and Practices, Reinhold, New York, 1968.Google Scholar
  4. 4.
    Lee, C. H. and Altan, T. Influence of flow stress and friction upon metal flow in upset forging of rings and cylinders, Trans. ASME, J. Engr. Industry, 94 (3), (Aug. 1972), 775.CrossRefGoogle Scholar
  5. 5.
    Male, A. T. and de Pierre, V. The validity of mathematical solutions for determining friction from the ring compression test, Trans. ASME, J. Lubrication Technology, 92 (1970), 389.CrossRefGoogle Scholar
  6. 6.
    Douglas, J. R. and Altan, T. Flow stress determination for metals at forging rates and temperatures, Trans. ASME, J. Engr. Industry; (Feb. 1975), 66.Google Scholar
  7. 7.
    Schey, J. A. (ed.) Metal Deformation Processes: Friction and Lubrication, Marcel Dekker, New York, 1970; superseded by Schey, J. A., Tribology in Metalworking: Lubrication, Friction and Wear; American Society for Metals, Metals Park, Ohio, 1983.Google Scholar
  8. 8.
    Altan, T. Characteristics and Applications of Various Types of Forging Equipment, SME Technical Report MFR72-02, Society of Manufacturing Engineers, Dearborn, Michigan, 1972.Google Scholar
  9. 9.
    Vigor, C. W. and Hornaday, J. W. A thermocouple for measurement of temperature transients in forging dies, in Temperature, Its Measurement and Control Vol. 3, Part 2, Reinhold, New York, 1961, p. 625.Google Scholar
  10. 10.
    Spies, K. Preforming in Forging and the Preparation of Reducer Rolling (in German), doctoral dissertation, Technical University, Hannover, 1959.Google Scholar
  11. 11.
    Teterin, G. P. and Tarnovskij, I. J. Calculation of plastic dimensions in forging axisymmetric parts in hammers (in Russian), Kuznechno- Stampovochnoe Proizvodstvo, (1968) (5), 6.Google Scholar
  12. 12.
    Vieregge, K. Contribution to Flash Design in Closed Die Forging (in German), doctoral dissertation, Technical University, Hannover, 1968.Google Scholar
  13. 13.
    Altan, T. et al. Forging Equipment, Materials and Practices, MCIC Handbook 3, Battelle-Columbus Laboratories, Columbus, Ohio, 1973.Google Scholar
  14. 14.Neuberger, F. and Pannasch, S. Material consumption in die forging of steel (in German), Fertigungstechnik und Betrieb, 12 (1962), 775 - 9.Google Scholar
  15. 15.
    Subramanian, T. L. and Altan, T. Practical method for estimating forging loads with the use of a programmable calculator, Journal of Applied Metal- working ASM, 1 (2), (Jan. 1980), 60.Google Scholar
  16. 16.
    Haller, H. W Handbook of Forging (in German), Carl Hanser Verlag, Munich, 1971.Google Scholar
  17. 17.
    Drabing, G. Guide to Die Making for Multiple Impression and Closed-Die Drop Forging Chambersburg, Pennsylvania.Google Scholar
  18. 18.
    Lange, K and Meyer-Nolkemper, H. Close-Die Forging (in German), Springer-Verlag, Berlin, 1977.Google Scholar
  19. 19.
    Altan, T. CAD/CAM of hot forging dies, J. Applied Metalworking 2 (2), (Jan. 1982), 77 - 85.CrossRefGoogle Scholar
  20. 20.
    Ficke, J. A, Oh, S. I. and Altan, T. Use of electronic geometry transfer and FEM simulation in the design of hot forming dies for a gear blank, Annals ofCIRP, 33 (1), (1984), 123 - 7.CrossRefGoogle Scholar
  21. 21.
    Akgerman, N. and Altan, T. Modular analysis of geometry and stresses in closed-die forging: application to a structural part. ASME Trans., J. Engr. for Industry, (Nov. 1972), 1025.Google Scholar
  22. 22.
    Altan, T., Billhardt, C. F. and Akgerman, N. CAD/CAM for Closed-Die Forging of Track Shoes and Links, SME Paper MS 76 - 739, 1976.Google Scholar
  23. 23.
    Badawy, A., Billhardt, C. F. and Altan, T. Implementation of forging load and stress analysis on a computervision CADDS-3 system, Proceedings of the Third Annual Computervision Users Conference, Dallas, Texas, Sept 1981.Google Scholar
  24. 24.
    Subramanian, T. L. and Altan, T. Application of computer aided techniques to precision closed die forging, Annals of CIRP, 21 (1), (1978), 123.Google Scholar
  25. 25.
    Akgerman, N. and Altan, T. Computer-aided design and manufacturing of forging dies for structural parts, Proc. North American Metalworking Research Conference, May 14-15, 1973, Hamilton, Ontario, Canada.Google Scholar
  26. 26.
    Altan, T. Computer simulation to predict load, stress, and metal flow in an axisymmetric close-die forging, in Metalforming: Interrelation Between Theory and Practice, Hoffmanner, A. L. (ed.), Plenum Publishing Corp., New York, 1971, pp. 249 - 73.Google Scholar
  27. 27.
    Voigtlander, O. The manufacturing of blades for turbines and compressors: precision forging of the airfoil (in German \Industrie-Anzeiger, 91 (40), (May 13, 1969 ), 908.Google Scholar
  28. 28.
    Akgerman, N. and Altan, T. Application of CAD/CAM in forging turbine and compressor blades, ASME Paper 75-GT-42, ASME Trans., J. Engr. for Power, 98 (Series A, No. 2), (April 1976), 290.CrossRefGoogle Scholar
  29. 29.
    Lee, C. H. and Kobayashi, S. New solutions to rigid plastic deformation problems using a matrix method, Trans. ASME, J. Engr. for Ind., 95 (1973), 865 - 73.CrossRefGoogle Scholar
  30. 30.
    Kobayashi, S. Rigid plastic finite element analysis of axisymmetric metal forming processes, Numerical Modeling of Manufacturing Processes, ASME, PVP-PB-025, (1977), 49 - 68.Google Scholar
  31. 31.
    Oh, S. I., Rebelo, N. and Kobayashi, S. Finite element formulation of the analysis of plastic deformation of rate-sensitive materials for metal forming, Metal Forming Plasticity, IUTAM Symposium, Tutzing, Germany, 1978, p. 273.Google Scholar
  32. 32.
    Oh, S. I. Finite element analysis of metal forming problems with arbitrarily shaped dies, Int. J. of Mechanical Science, 17, (1982), 293.CrossRefGoogle Scholar
  33. 33.
    Oh, S. I., Lahoti, G. D. and Altan, T. ALPID — a general purpose FEM program for metal forming, Proceedings of NAMRC-IX, May, 1981, State College, Pennsylvania, p. 83.Google Scholar
  34. 34.
    Oh, S. I., Lahoti, G. D. and Altan, T. Analysis of backward extrusion process by the finite element method, Proceedings ofNAMRC-X, Hamilton, Canada, 1982.Google Scholar
  35. 35.
    Oh, S. I., Park, J. J., Kobayashi, S. and Altan, T. Application to FEM modeling to simulate metal flow in forging a titanium alloy engine disk, J. Engr. for Industry, 105, (November 1983), 251 - 8.CrossRefGoogle Scholar
  36. 36.
    Wu, W. T., Oh, S. I. and Altan, T. Investigation of defect formation in rib- web type forging by ALPID, Proceedings of NAMRC XII, Society of Manufacturing Engineers, Dearborn, Michigan, 1984.Google Scholar
  37. 37.
    Huntress, E. A. Die sinking today, American Machinist, (May 1980), 152.Google Scholar
  38. 38.
    Huntress, E. A. Electrical discharge machining, American Machinist, (Aug. 1978), 83.Google Scholar
  39. 39.
    Schey, J. A. Introduction to Manufacturing Processes, McGraw-Hill, Inc., New York, 1977, p. 278.Google Scholar
  40. 40.
    Ullmann, W. The manufacturing of graphite electrodes for EDM by using the abrading method (in German), Giesserei, No. 13, (June 23, 1980 ), 481.Google Scholar
  41. 41.
    Hoischen, H. The loading of the punch in cold hobbing (in German), Industrie Anzeiger, 91 (48), (June 10, 1969 ), 1090.Google Scholar
  42. 42.
    Sauerbrey, H. M. The forge hammer-press and its capabilities (in German), Industrie Anzeiger, 92 (66), (August 10, 1971 ).Google Scholar
  43. 43.
    Ingenhag, W. J. et al New ways to manufacture valve bodies (in German), Werkstattstechnik, 58 (12), (Dec. 1968), 565.Google Scholar
  44. 44.
    Sabroff, A M. et al Application of CAD/CAM techniques to close tolerance forging of spiral bevel gears, Annals of the CIRP, 31 (1), (1982), 141.CrossRefGoogle Scholar

Copyright information

© Elsevier Applied Science Publishers LTD 1986

Authors and Affiliations

  • T. Altan
    • 1
    • 2
  1. 1.Battelle Columbus LaboratoriesColumbusUSA
  2. 2.Department of Industrial and Systems EngineeringOhio State UniversityColumbusUSA

Personalised recommendations