Body sizes, development rates, and genome sizes among Calanus species

  • I. A. McLaren
  • J.-M. Sevigny
  • C. J. Corkett
Conference paper
Part of the Developments in Hydrobiology book series (DIHY, volume 47)


Data on embryonic and larval development times (D) of Calanus species are analysed using Bělehrádek’s temperature (T) function, D = a (T - α) b , with b = −2.05 as in previous studies. Among these species, α for embryonic duration varies directly with temperatures in their geographical ranges and a is related to egg diameter. Using α and b from embryonic durations, the fitted values of α for older stages are related to body sizes. Roughly estimated nucleus numbers in single adult females of C. finmarchicus, glacialis and hyperboreus were similar at 72 000, 85 000, and 96 000 respectively. Genome sizes (2C) of adult females are ca. 13 pg DNA in C. finmarchicus and pacificus, ca. 17 pg in C. sinicus, ca. 21 pg in C. helgolandicus and marshallae, and ca. 25 pg in C. glacialis and hyperboreus. These correspond roughly to body sizes and temperature-corrected development rates, quite precisely so in the sibling pair C. finmarchicus and C. glacialis, suggesting that, given similar nucleus numbers, there is nucleotypic control of whole-organism characteristics.

Key words

Calanus copepoda DNA sizes development rates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cavalier-Smith, T. (ed.), I985. The evolution of genome size. John Wiley & Sons, New York.Google Scholar
  2. Corkett, C. F., 1972. Development rate of copepod eggs of the genus Calanus. J. exp mar. Biol. Ecol. 10: 171–175.CrossRefGoogle Scholar
  3. Corkett, C. J. & I. A. McLaren, 1969. Relationships between development rate of eggs and older stages of copepods. J. mar. biol. Ass. UK 50: 161–168.CrossRefGoogle Scholar
  4. Corkett, C. J., I. A. McLaren & J. -M. Sevigny, 1986. The rearing of the marine calanoid copepods Calanus finmarchius (Gunnerus), C. glacialis Jaichnov and C. hyperbereus Krøyer with comment on the equiproportional rule. Syllogeus (Nat. Mus. Can.) 58: 539–546Google Scholar
  5. Eriksson, S., 1973. The biology of the marine planktonic Copepoda on the West coast of Sweden. Zoon 1: 37–68.Google Scholar
  6. Frost, D. W., 1974. Calanus marshallae, a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. glacialis. Mar. Biol. 26: 77–99.CrossRefGoogle Scholar
  7. Grainger, E. H., 1963. Copepods of the genus Calanus as indicators of eastern Canadian waters. In M. J. Dunbar (ed.), Marine Distributions. Univ. Toronto Press, Toronto: 68–94.Google Scholar
  8. Harris, J. R., 1983. The development and growth of Calanus copepodites. Limnol. Oceanogr. 28: 142–147.CrossRefGoogle Scholar
  9. Klein Breteler, W. C. M. & S. R. Gonzalez, 1982. Influence of cultivation and food concentration on body length of calanoid copepods. Mar. Biol. 71: 157–161.CrossRefGoogle Scholar
  10. Landry, M. R., 1983. The development of marine calanoid copepods with comment on the isochronal rule. Limnol. Oceanogr. 28: 614–624.CrossRefGoogle Scholar
  11. Marshall, S. M. & A. P. Orr, 1952. On the biology of Calanus finmarchicus. VII: Factors affecting egg production. J. mar. biol. Aw. U.K. 30: 527–547.CrossRefGoogle Scholar
  12. Matthews, J. B. L., 1967. Calanus finmarchicus S. L. in the North Atlantic. The relationships between Calanus finmarchicus S. Str., C. glacialis and C. helgolandicus. Bull, mar. Ecol. 6: 159–179.Google Scholar
  13. McLaren, I. A., 1966. Predicting development rate of copepod eggs. Biol. Bull. 131: 457–469.CrossRefGoogle Scholar
  14. McLaren, I. A., 1986. Is structural growth of Calanus potentially exponential? Limnol. Oceanogr. 31: 1342–1346.CrossRefGoogle Scholar
  15. McLaren, I. A., and D. J. Marcogliese, 1983. Similar nucleus numbers among copepods. Can, J. Zool. 61: 721–724.CrossRefGoogle Scholar
  16. McLaren, I. A., S. M. Woods & J. R. Shea, Jr., 1966. Polyteny: a source of cryptic speciation among copepods. Science 153: 1641–1642.PubMedCrossRefGoogle Scholar
  17. Peters, R. H., 1983. The ecological implications of body size. Cambridge University Press, Cambridge, England, 329 pp.Google Scholar
  18. Peterson, W. T., 1986. Development, growth, and survivorship of the copepod Calanus marshallae in the laboratory. Mar. Biol. 29: 61–72.Google Scholar
  19. Rasch, E. M., H. J. Burr & R. W. Rasch, 1971. The DNA content of sperm of Drosophila melanogaster. Chromosoma (Berlin) 33: 1–18.CrossRefGoogle Scholar
  20. Robins, J. H., & I. A. McLaren, 1981. Unusual variations in nuclear DNA contents in the marine copepod Pseudocalanus. Can. J. Genet. Cytol. 24: 529–540Google Scholar
  21. Sevigny, J. -M., and I. A. McLaren, 1988. Protein polymorphisms in six species of the genus Calanus. Hydrobiologia 167 /168: 267–274.CrossRefGoogle Scholar
  22. Thompson, B. M., 1981. Growth and development of Pseudocalanus elongatus and Calanus sp. in the laboratory. J. mar. boil. Ass. UK 62: 359–372.CrossRefGoogle Scholar
  23. Uye, S., 1988. Temperature dependent development of Calanus sinicus (Copepoda: Calanoida) in the laboratory. Hydrobiologia 167 /168: 285–293.CrossRefGoogle Scholar
  24. Woods, S. M., 1969. Potyteny and size variations of the copepod Pseudocalanus from two semi-landlocked fiords on Baffin Island. J. Fis. Res. Bd Can. 26: 543–556.CrossRefGoogle Scholar
  25. Woodhouse, C., 1971. A study of the ecological relationships and taxonomic status of two species of the genus Calanus (Crustacea: Copepoda). Ph.D. thesis, University of British Columbia, Vancouver, 145 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • I. A. McLaren
    • 1
  • J.-M. Sevigny
    • 1
  • C. J. Corkett
    • 1
  1. 1.Biology DepartmentDalhousie UniversityHalifax, Nova ScotiaCanada

Personalised recommendations