Comparative life histories in the genera Calanus and Neocalanus in high latitudes of the northern hemisphere

  • R. J. Conover
Part of the Developments in Hydrobiology book series (DIHY, volume 47)


At least nine species of Calanidae occupy the area of interest, four in the Atlantic and five in the Pacific. All store wax esters and probably can undergo diapause. Latitudinally overlapping or onshore-offshore associations of two or more species occur in both oceans. Interzonals, with reduced mouth parts in the adult female, arc endemic to the Pacific subarctic gyre where their life cycles are completed in one year. Presumably its nearly closed circulation and environmental stability have favored the evolution of endemic species well adapted to those conditions. Lack of ice-and/or salinity-induced stability also limits blooms there. The sub-arctic Atlantic contains several smaller oceanographic features, open to both arctic and Atlantic influences and populated by species of different origins, arctic species can behave as interzonals but may also require two or more years to complete their life cycles. Females may need to feed one year to reproduce the next and therefore they retain functional mouthparts. In some places in the North Atlantic, blooms may start in the sub-ice zone and seed the remaining euphotic zone. There the earliest stages of some the Calanus species can develop close to the ice, using primarily ice algae as food, while the remaining stages are adapted to utilize brief periods of intense primary production in the water column. Salinity-induced stability and shallow water favor blooms in the boundary waters of both oceans, which may be of greater importance in the Atlantic because of the proportionally greater area of continental shelf there. In both oceans the smaller species of Calanidae can produce up to three generations per year.

Key words

copepod Calanus life history vertical distribution reproduction ontogenetic migration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aagaard, K., J. H. Swift and E.C. Carmack, 1985. Thermohaline circulation in the Arctic Mediterranean Seas. J. Geophys. Res. 90C. 4833–4846.CrossRefGoogle Scholar
  2. Alcaraz, M., G. -A. Paffenhöfer and J. R. Strickter, 1980. Catching the algae: a first account of visual observations on filter-feeding calanoids. In W C. Kerfoot (ed.). Evolution and Ecology of Zooplankton Communities. The University Press of New England, Hanover(N H.); Lond: 241–248.Google Scholar
  3. Conover, R.J., 1962. Metabolism and growth in Calanus hyperhoreus in relation to its life cycle. Rapp. Proc.-verb. Cons. int. Explor. Mer 153: 190–197.Google Scholar
  4. Conover, R J., 1964 Food relations and nutrition of Zooplankton Proc Symp. Experimental Marine Ecology, Grad. School Oceanogr, Univ. Rhode Island, Occ. Publ. No 2: 81–91Google Scholar
  5. Conover, R. J., 1965. Notes on the moiling cycle, development of sexual characters arid sex ratio in Calanus hyperboreus. Crustaceana 8: 308–320.CrossRefGoogle Scholar
  6. Conover, R. J., 1967. Reproductive cycle, early development, and fecundity in laboratory populations of the copepod Calanus hyper boreus. Crustaceana 13: 61–72CrossRefGoogle Scholar
  7. Conover, R. J. and E. D. S. Corner, 1968. Respiration and nitrogen excretion by some marine Zooplankton in relation to their life cycles. J. mar. biol. Ass. U. K. 48: 49–75.CrossRefGoogle Scholar
  8. Cooney, R. T., 1986. The seasonal occurrence of Neocalanus cristatus, Neocalanus plumchrus, and Eucalanus bungii over the shelf of the northern Gulf of Alaska. Com. Shelf. Res. 5: 541–553.CrossRefGoogle Scholar
  9. Corkett, C. J., I. A. McLaren and J. -M. Sevigny, 1986. The rearing of the marine calanoid copcpods Calanus finmarchicus (Gunnerus), C. facialis Jaschnov and C. hyperhoreus Krøyer with comment on the equiproportional rule. Proc. 2nd. Int Conf. Copepoda. Ottawa. Syltogeus 539–546Google Scholar
  10. Cushing. D. H., 1959. The seasonal variation in oceanic production as a problem in population dynamics. J. Cons, perm. int. fcxplor. Mer 24: 455–464.Google Scholar
  11. Fish, C J., 1936. The biology of Calanus finmarchicus in the Gulf of Maine and Bav of Fundy. Biol. Bull. 70: 118–141.CrossRefGoogle Scholar
  12. Fleminger, A.. 1985 Dimorphism and possible sex change in copepods of the family Calanidae Mar Biol. 88: 273–294.CrossRefGoogle Scholar
  13. Fleminger, A., K. Hulsemann, 1977 Geographical range and taxonomic divergence in North Atlantic Calanus (C. helgolandicus, C. finmarchicus and C. glacialis) Mar Biol. 40: 233–248.CrossRefGoogle Scholar
  14. Frost, B. W., 1974, Calanus marshallae. a new species of calanoid copepod closely allied to the sibling species C. finmarchicus and C. glacial. Mar. Biol. 26: 77–99.CrossRefGoogle Scholar
  15. Frost, B. W., M. R. Landry, R. P. Hassett. 1983 Feeding behavior of large calanoid copepods Neocalanus cristatus and N. plumchrus from the subarctic Pacific Ocean, Deep Sea Res. 30: 1–13.Google Scholar
  16. Fulton, J., 1973 Some aspects of the life history of Calanus plumchrus in the Strait of Georgia J. Fish Res. Bd Can. 30: 811–815.CrossRefGoogle Scholar
  17. Gatten. R. R., E D. S. Corner, C. C. Kilvington, J. R Sargent, 1979. A seasonal survey of the lipids in Calanus helgolandicus Claus from the English Channel In E. Naylor, R G. Hartnoll (eds). Cyclic Phenomena in Marine Plants and Animals. Pergamon Press. Oxford: 275–284.Google Scholar
  18. Gatten. R R., J. R. Sargent, T. E V. Foraberg, S. C. M. O’Hara and K. D. S. Corner, 1980. On the nutrition and metabolism of zooplankton XIV. Utilization of lipid by Calanus helgolandicus during maturation and reproduction. J. mar. biol. Ass. U. K. 60: 391–399.CrossRefGoogle Scholar
  19. Grainger, E.H., 1959. The annual oceanographic cycle at Igloolik in the Canadian arctic:. 1. The zooplankton and physical and chemical observations. J. Fish Res. Bd Can. 16: 453–501.CrossRefGoogle Scholar
  20. Grainger, E. H., 1961. The copepods Calanus glacialis Jaschnov and Calanus finmarchicus (Gunnerus) in Canadian arctic-subarctic waters. J. Fish Res. Bd Can. 18: 663–678.CrossRefGoogle Scholar
  21. Hakanson. J. L., 1984. The long and short term feeding condition in field-caught Calanus pacificus. as determined from the lipid content. Limnol. Oceanogr. 29: 794–804.CrossRefGoogle Scholar
  22. Hallberg, E., H. -J. Hirche, 1980. Differentiation of mid-gut in adults and over-wintering copepodids of Calanus finmarchicus (Gunnerus) and C helgolandicus Claus. J. exp. mar. Biol. Ecol. 48: 283–295.CrossRefGoogle Scholar
  23. Head, E.J.H., R. J. Conover. 1983. Induction of digestive enzymes in Calanus hyperboreus. Mar. Biol. Lett. 4: 219–231.Google Scholar
  24. Heinrich, A. K., 1957. The breeding and development of the dominant copepods in the Bering Sea. Trudy Veses. Gidrobiol. Obshch. 8: 143–162.Google Scholar
  25. Heinrich, A. K., 1962. On the production of copepods in the Bering Sea Int. Revue ges. Hydrobiol. 47: 465–469CrossRefGoogle Scholar
  26. Geynrikh (Heinrich). A. K., 1968 Seasonal phenomena in the plankton of the northeast Pacific Ocean Oceanology 8: 231–239.Google Scholar
  27. Hirche. H. -J., 1980. The cultivation of Calanoides carinatus Krøyer (Copepoda: Calanoida) under different temperature and food conditions - with a description of eggs and nauplii. J. mar. biol Ass. U. K- 60: 115–125.CrossRefGoogle Scholar
  28. Hirche, H.-J., Bohrer, 1987 Reproduction of the arctic copepod Calanus glacialis in Fram Strait. Mar. Biol. 94: 11–17CrossRefGoogle Scholar
  29. Johnson. M. W., 1963. Arctic ocean zooplankton. Proc. Arctic Basin Symposium, October 1962. Arctic Institute of North America: 173–183Google Scholar
  30. Landry, M. R., 1983. The development of marine calanoid copepods with comment on the isochronal rule Limnol. Oceanogr. 28: 614–624.CrossRefGoogle Scholar
  31. Lee, R F., 1974. Lipid composition of the copepod Calanus hyperboreus from the Arctic Ocean. Changes with depth and season Mar. Biol. 26: 313–318.CrossRefGoogle Scholar
  32. Marshall. S. M., A. G. Nicholls, A P Orr, 1934. On the biology of Calanus finmarchicus. V Seasonal distribution, size, weight and chemical composition in Loch Striven in 1933 and their relation to the phytoplankton. J mar. biol. Ass. U. K. 19: 793–828.CrossRefGoogle Scholar
  33. Marshall. S. M., A. P. Orr. 1955. The biology of a marine copepod Calanus finmarchicus (Gunnerus). Oliver and Boyd. Edinburgh. Lond. 188 pp.Google Scholar
  34. McLaren. I. A., 1966. Predicting development rate of copepod eggs. Biol. Bull. 131: 457–469CrossRefGoogle Scholar
  35. Miller, C. B., M. J. Clemons, in preparation. Revised life history analysis for large grazing copepods in the subarctic Pacific OceanGoogle Scholar
  36. Miller, C. B., B. W. Frost, H. P. Batchelder, M. J. Clemons, R. E. Conway, 1984 Life histories of large, grazing copepods in a subarctic ocean gyre: Neocalanus plumchrus, Neocalanus cristatus, and Eucalanus bungii in the northeast Pacific. Prog. Occanog. 13: 201–243CrossRefGoogle Scholar
  37. Motoda. S., T. Minoda, 1974. Plankton of the Bering Sea In D. W. Hood, E. J. Kelly (eds). Oceanography of the Bering Sea. Inst. Mar Sci., Univ. Alaska. Fairbanks: 207 - 241.Google Scholar
  38. Mullin, M. M., E. R. Brooks. 1967. Laboratory culture, growth rate, and feeding behavior of a planktonic marine copepod. Limnol. Oceanogr. 12: 657–666.CrossRefGoogle Scholar
  39. Mullin, M. M., E. R. Brooks. 1970 Growth and metabolism of two planktonic, marine copepods as influenced by temperature and type of food In J. H. Steele (ed.), Marine Food Chains. Oliver and Boyd. Edinburgh: 74–95.Google Scholar
  40. Nicholls. A. G., 1933 On the btology of Calanus finmarchicus. III. Vertical distribution and diurnal migration in tin; Clyde Sea-area. J. mar. biol. Ass. U. K. 19: 139–164.CrossRefGoogle Scholar
  41. Omoci, M., 1967. Calanus cristatus and submergence of the Oyashio water. Deep Sea Res 14: 525–532.Google Scholar
  42. Østvedt, O.-J., 1955. Zooplankton investigations from weather ship M in the Norwegian Sea. 1948–49. Hvalr. Skrift. 40: 1–93.Google Scholar
  43. Paffenhöfer, G. –A., 1970. Cultivation of Calanus helgolandicus under controlled conditions. Helgoländer wiss. Meeresunters. 20: 346–359.CrossRefGoogle Scholar
  44. Paffenhöfer, G. -A., J. R., Strickler and M. Alcaraz, 1981. Suspension-feeding by herbivorous calanoid copepods: a cinematographic study. Mar. Biol. 67: 193–199.CrossRefGoogle Scholar
  45. Peterson, W. T., 1979. Life history and ecology of Calanus marshallae Frost in the Oregon upwelling zone. Doctoral dissertation. Oregon State University.Google Scholar
  46. Peterson, W T., 1986. Development, growth, and survivorship of the copepod Calanus marshallae in the laboratory. Mar. Ecol. Prog. Ser. 29: 61–72.CrossRefGoogle Scholar
  47. Runge, J. A., 1984. Egg production of the marine, planktonic copepod. Calanus pacificus Brodsky: laboratory observations. J. exp. mar. Biol. Ecol. 74: 53–66CrossRefGoogle Scholar
  48. Safronov, S. G., 1984. Ecology of the copepod Calanus glacialis from the Sea of Okhotsk. Sov. J. mar. Biol. 10: 200–203Google Scholar
  49. Sargent, J. R., R. R. Gatten, E. D. S. Corner and C. C. Kilvington, 1977. On the nutrition and metabolism of zooplankton. XI. Lipids in Calanus helgolandicus grazing Biddulphia sinensis. J. mar. biol. Ass. U. K. 57: 525–533.CrossRefGoogle Scholar
  50. Sargent, J. R. and K. J. Whittle, 1981. Lipids and hydrocarbons in the marine food web. In A. R. Longhurst (ed.), Analysis of Marine Ecosystems. Academic Press, Lond.: 491–533.Google Scholar
  51. Sekiguchi, H., 1974. Relation between the ontogenetic vertical migration and the mandibular gnathobase in pelagic copepods Bull. Fac. Fish., Mie University 1974: 1–10.Google Scholar
  52. Smith, S. L. and J Vidal, 1986. Variations in the distribution, abundance, and development of copepods in the southeastern Bering Sea in 1980 and 1981. Cont. Shelf Res. 5: 215–239.CrossRefGoogle Scholar
  53. Tande, K. S. and C. C. E. Hopkins, 1981. Ecological investigations of the zooplankton community of Balsfjorden, northern Norway the genital system in Calanus finmarchicus and the role of gonad development in overwintering strategy Mar. Biol. 63: 159 – 164.CrossRefGoogle Scholar
  54. Tande, K. S., A. Hassel and D. Slagstad, 1985. Gonad maturation and possible life cycle strategies in Calanus finmarchicus and Calanus glacialis in the northwestern part of the Barents Sea. In J. S. Gray and M. E. Christiansen (eds), Marine Biology of Polar Regions and Effects of Stress on Marine Organisms. J. Wiley and Sons, N. Y.: 141–155.Google Scholar
  55. Vidal, J., 1980a. Physioecology of zooplankton. IV. Effects of phytoplankton concentration, temperature, and body size on the growth rate of Calanus pacificus and Pseudocalanus sp. Mar. Biol. 56: 111–134.CrossRefGoogle Scholar
  56. Vidal, J., 1980b. Physioecology of zooplankton. IV. Effects of phytoplankton concentration, temperature, and body size on the net production efficiency of Calanus pacificus. Mar. Biol. 56: 203–211.CrossRefGoogle Scholar
  57. Wiborg, K. F., 1954. Investigations on zooplankton in coastal and offshore waters off western and northwestern Norway. Rep. norw. Fish. Invest. 11: 1–246.Google Scholar
  58. Williams, R., 1985. Vertical distribution of Calanus finmarchicus and C. helgolandicus in relation to the development of the seasonal thermocline in the Celtic Sea. Mar. Biol. 86: 145–149.CrossRefGoogle Scholar
  59. Wilhams, R. and D. V. P. Conway, 1984. Vertical distribution, and seasonal and diurnal migration of Calanus helgolandicus in the Celtic Sea. Mar. Biol. 79: 63–73.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • R. J. Conover
    • 1
  1. 1.Department of Fisheries and OceansBedford Institute of OceanographyDartmouthCanada

Personalised recommendations