Advertisement

Abstract

Three examples are presented to illustrate the use of steady-state fluorescence in systems of isolated chlorophyll-protein complexes:
  • The chlorophyll-protein subunits of Photosystem I and II have been isolated and their fluorescence maxima established, due to the combined effort of many workers. The available data are reviewed. They characterize the individual chlorophyll-protein complexes and add to the understanding of fluorescence emitted by intact thylakoids.

  • Various lipids are able to incorporate separated chlorophyll-protein complexes into proteolipid particles. Fluorescence emission spectra of the separated complexes and of the proteolipid particles are used to reveal interruption and restoration, respectively, of energy transfer between the different chlorophyll-protein complexes.

  • The pigments of the light-harvesting Chl-a/b-protein complex (LHC-II) are stable under strong white light, but they are readily photo-oxidised in the presence of limonene or Triton X-100. The fluorescence excitation spectrum of LHC-II reveals differences in the mode of action of limonene and Triton X-100. Evidence for the protective role of LHC-II apoprotein is obtained from these and other experiments.

Key words

Chlorophyll-protein complexes Photosystem I Photosystem II Chlorophyll-proteolipid particles Light-harvesting chlorophyll-a/b-protein complex II (LHC-II) Fluorescence emission Fluorescence excitation Energy transfer Limonene Photooxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akabori K, Tsukamoto H, Tsukihara J, Nagatsuka T, Motokawa O and Toyoshima Y, 1988. Disintegration and reconstitution of Photosystem II reaction center core complex. I. Preparation and characterization of three different types of subcomplex. Biochim. Biophys. Acta 932: 345–357.CrossRefGoogle Scholar
  2. Andersson B and Anderson JM, 1980. Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim. Biophys. Acta 593: 427–440.CrossRefPubMedGoogle Scholar
  3. Damm I, Knoetzel J and Grimme LH, 1987. On the protective role of carotenoids in the PS I reaction centre and LHC I complexes of the thylakoid membrane. In: Biggins J. Progress in Photosynthesis Research. Proc. Vllth Internatl. Congr. on Photosynthesis. Vol. 2: 351–354. Martinus Nijhoff, Dordrecht, Boston, Lancaster.Google Scholar
  4. Govindjee and Yang L, 1966. Structure of the red fluorescence band in chloroplasts. J. General Physiol. 49: 763–780.CrossRefGoogle Scholar
  5. Haworth Ph, Watson JL and Arntzen CJ, 1983. The detection, isolation and characterization of a light-harvesting complex which is specifically associated with Photosystem I. Biochim. Biophys. Acta 724: 151–158.CrossRefGoogle Scholar
  6. Kyle DJ, Staehelin LA and Arntzen CJ, 1983. Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch. Biochem. Biophys. 222: 527–541.CrossRefPubMedGoogle Scholar
  7. Lam E, Ortiz W and Malkin R, 1984. Chlorophyll a/b proteins of Photosystem I. FEBS Lett. 168: 10–14.CrossRefGoogle Scholar
  8. Larkum AWD and Anderson JM, 1982. The reconstitution of a photosystem II protein complex, P-700-chlorophyll a-protein complex and light-harvesting chlorophyll a/b-protein. Biochim. Biophys. Acta 679: 410–421.CrossRefGoogle Scholar
  9. Mullet JE, Burke JJ and Arntzen CJ, 1980. Chlorophyll proteins of Photosystem I. Plant Physiol. 65: 814–822.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Murata N, Miyao M, Omata T, Matsunami H and Kuwabara T, 1984. Stoichiometry of components in the photosynthetic oxygen evolution system of Photosystem II particles prepared with Triton X-100 from spinach chloroplasts. Biochim. Biophys. Acta 765: 363–369.CrossRefGoogle Scholar
  11. Murphy DJ, 1986. Reconstitution of energy transfer and electron transfer between solubilised pigment-protein complexes from thylakoid membranes. The role of acyl lipids. Photosynth. Research 8: 219–233.CrossRefGoogle Scholar
  12. Murphy DJ, Crowther D and Woodrow IE, 1984. Reconstitution of light harvesting chlorophyll-protein complexes with Photosystem 2 complexes in soybean phosphatidylcholine liposomes. FEBS Lett. 165: 151–155.CrossRefGoogle Scholar
  13. Nakatani HY, Ke B, Dolan E and Arntzen CJ, 1984. Identity of the Photosystem II reaction center polypeptide. Biochim. Biophys. Acta 7 65: 347–352.CrossRefGoogle Scholar
  14. Nanba O and Satoh K, 1987. Isolation of a Photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559. Proc. Natl. Acad. Sci. USA 84: 109–112.CrossRefPubMedGoogle Scholar
  15. Nechushtai R, Nourizadeh SD and Thornber JP, 1986. A reevaluation of the fluorescence of the core chlorophylls of Photosystem I. Biochim. Biophys. Acta 848: 193–200.CrossRefGoogle Scholar
  16. Omata T, Murata N and Satoh K, 1984. Quinone and pheophytin in the photosynthetic reaction center II from spinach chloroplasts. Biochim. Biophys. Acta 765: 403–405.CrossRefGoogle Scholar
  17. Ortiz W, Lam E, Chollar S, Munt D and Malkin R, 1985. Topography of the protein complexes of the chloroplast thylakoid membrane. Studies of Photosystem I using a chemical probe and proteolytic digestion. Plant Physiol. 77: 389–397.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Satoh K and Butler WL, 1978a. Competition between the 735 nm fluorescence and the photochemistry of Photosystem I in chloroplasts at low temperature. Biochim. Biophys. Acta 502: 103–110.CrossRefPubMedGoogle Scholar
  19. Satoh K and Butler WL, 1978b. Low temperature spectral properties of subchloroplast fractions purified from spinach. Plant Physiol. 61: 373–379.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Siefermann-Harms D, 1984. Evidence for a heterogenous organization of violaxanthin in thylakoid membranes. Photochem. Photobiol. 40: 507–512.CrossRefGoogle Scholar
  21. Siefermann-Harms D, 1987. The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol. Plantarum 69: 561–568.CrossRefGoogle Scholar
  22. Siefermann-Harms D, 1988. Physiologische und biochemische Untersuchungen zur Montanen Vergilbung von Fichten. — Teil I: Die Rolle von Apoprotein und Pigmentanordnung beim Schutz der Pigmente des Licht-sammelnden Chl-a/b-Proteins vor Photo-oxidation. KfK-PEF, in press.Google Scholar
  23. Siefermann-Harms D and Ninnemann H, 1982. Pigment organization in the light-harvesting Chl-a/b-protein complex of lettuce chloroplasts. Evidence obtained from protection of the chlorophylls against proton attack and from excitation energy transfer. Photochem. Photobiol. 35: 719–731.CrossRefGoogle Scholar
  24. Siefermann-Harms D, Ross JW, Kaneshiro KH and Yamamoto HY, 1982. Reconstitution by monogalactosyldiacylglycerol of energy transfer from light-harvesting chlorophyll-a/b-protein complex to the photosystems in Triton X-100-solubilized thylakoids. FEBS Lett. 149: 191–196.CrossRefGoogle Scholar
  25. Siefermann-Harms D, Ninnemann H and Yamamoto HY, 1987. Reassembly of solubilized chlorophyll-protein complexes in proteolipid particles comparison of monogalactosyldiacylglycerol and two phospholipids. Biochim. Biophys. Acta 892: 303–313.CrossRefGoogle Scholar
  26. Sprague SG, Camm EL, Green BR and Staehelin LA, 1985. Reconstitution of light-harvesting complexes and Photosystem II cores into galactolipid and phospholipid liposomes. J. Cell Biol. 100: 552–557.CrossRefPubMedGoogle Scholar
  27. Strasser RJ and Butler WL, 1977. Fluorescence emission spectra of Photosystem I, Photosystem II and the light-harvesting chlorophyll a/b complex of higher plants. Biochim. Biophys. Acta 462: 307–313.CrossRefPubMedGoogle Scholar
  28. Tapie P, Choquet Y, Breton J, Delepelaire P and Wollman F-A, 1984. Orientation of Photosystem-I pigments. Investigation by low-temperature linear dichroism and polarized fluorescence emission. Biochim. Biophys. Acta 767: 57–69.CrossRefGoogle Scholar
  29. Van Dorssen RJ, Plijter JJ, Dekker JP, Den Ouden A, Amesz J and Van Gorkom HJ, 1987a. Spectroscopic properties of chloroplast grana membranes and of the core of Photosystem II. Biochim. Biophys. Acta 890: 134–143.CrossRefGoogle Scholar
  30. Van Dorssen RJ, Breton J, Plijter JJ, Satoh K, Van Gorkom HJ and Amesz J, 1987b. Spectroscopic properties of the reaction center and of the 47 kDa chlorophyll protein of Photosystem II. Biochim. Biophys. Acta 893: 267–274.CrossRefGoogle Scholar
  31. Yamada Y, Tang X-S, Itoh S and SAtoh K, 1987. Purification and properties of an oxygen-evolving Photosystem II reaction-center complex from spinach. Biochim. Biophys. Acta 891: 129–137.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Dorothea Siefermann-Harms
    • 1
  1. 1.Kernforschungszentrum KarlsruheInstitut für Genetik und ToxikologieKarlsruheGermany

Personalised recommendations