Advertisement

Photosystem II Heterogeneity in Chloroplasts

  • A. Melis
  • G. E. Guenther
  • P. J. Morrissey
  • M. L. Ghirardi

Abstract

Two aspects of photosystem II (PSII) heterogeneity are discussed. (A) The PSII antenna heterogeneity refers to the existence of PSII centers with distinct photosynthetic unit size. Measurements of PSII antenna size in developing chloroplasts, in Chl b-less and Chl b-deficient mutants, and in mature higher plant chloroplasts indicated the existence of three distinct populations of PSII centers: PSIIα with a total of 210 (or more) chlorophyll (a+b) molecules; PSIIβ with a total of 120 Chl (a+b) molecules. In the absence of Chl b, a PSII complex containing only 50 Chl a molecules (PSII-50) was identified. A developmental relationship among PSII-50, PSIIβ and PSIIα is proposed. According to this hypothesis, the formation of the complete PSII unit involves the assembly of three modular complexes (PSII-50, LHC II-inner, and LHC II-peripheral). Addition of LHC II-inner to PSII-50 yields PSIIβ. Addition of LHC II-peripheral to PSIIβ yields PSIIα. The relative proportion of PSII centers with the three antenna configurations depends on the developmental stage of the chloroplast and on the availability of Chl b. Mature wild type chloroplasts contain PSIIα (75–80% of the total PSII) and PSIIβ (20–25% of the total PSII). (B) The PSII reducing side heterogeneity refers to the existence of PSĪI centers with impaired Q to QB electron transfer interaction (QB-nonreducing centers). The fraction of PSII-QB-nonreducing centers is small (20–25% of the total PSII) as tested in several chloroplast preparations. This steady state concentration of QB-nonreducing centers appears independent of the developmental stage of the chloroplast and also independent of the PSII photosynthetic unit size. In mature spinach chloroplasts, PSIIβ and PSII-QB-nonreducing centers constitute one and the same pool of PSII centers. It is proposed that PSII-QB-nonreducing centers represent newly synthesized and/or repaired PSII centers which have not yet established a functional interaction between QȦ and QB.

Keywords

Fluorescence induction kinetics photosystem II heterogeneity chlorophyll antenna size plastoquinone reduction reaction-center repair 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abadia, J., Glick, R.E., Taylor, S.E., Terry, N. and Melis, A. (1985) Plant Physiol. 79, 872–878CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akoyunoglou, G. (1977) Arch. Biochem. Biophys. 183, 571–580CrossRefPubMedGoogle Scholar
  3. Andersson, B., Sunby, C, Larsson, U.K., Maenpaa, P. and Melis, A. (1987) In, Progress in Photosynthesis Research (J. Biggins, ed), Vol. II, 669–676, Marti nus Nijhoff Publishers, DordrechtGoogle Scholar
  4. Argyroudi-Akoyunoglou, J.H. and Akoyunoglou, G. (1970) Plant Physiol. 46, 247–249CrossRefPubMedPubMedCentralGoogle Scholar
  5. Armond, P.A., Arntzen, C.J., Briantais, J.M. and Yernotte, C (1976) Arch. Biochem. Biophys. 175, 54–63CrossRefPubMedGoogle Scholar
  6. Bennoun, P. and Li, Y.S. (1973) Biochim. Biophys. Acta 292, 162–168.CrossRefPubMedGoogle Scholar
  7. Black, M.T., Brearley, T.H. and Horton, P. (1986) Photosyn. Res. 8, 193–207CrossRefPubMedGoogle Scholar
  8. Farchaus, J.W., Widger, W.R., Cramer, W.A. and Dilley, R.A. (1982) Arch. Biochem. Biophys. 217, 362–367CrossRefPubMedGoogle Scholar
  9. Forbush, B. and Kok, B. (1968) Biochim. Biophys. Acta 162, 243–253CrossRefPubMedGoogle Scholar
  10. Ghirardi, M.L. and Melis, A. (1988) Biochim. Biophys. Acta 932, 130–137CrossRefGoogle Scholar
  11. Ghirardi, M.L., McCauley, S.W. and Melis, A. (1986) Biochim. Biophys. ActaGoogle Scholar
  12. 851, 331–339Google Scholar
  13. Graan, T. and Ort, D.R. (1986) Biochim. Biophys. Acta 852, 320–330CrossRefGoogle Scholar
  14. Guenther, J.E., Nemson, J.A. and Melis, A. (1988) Biochim. Biophys. Acta, in pressGoogle Scholar
  15. Highkin, H.R. (1950) Plant Physiol. 25, 294–306CrossRefPubMedPubMedCentralGoogle Scholar
  16. Highkin, H.R. and Frenkel, A.W. (1962) Plant Physiol. 37, 814–820CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hodges, M. and Barber, J. (1983) FEBS Lett. 160, 177–181CrossRefGoogle Scholar
  18. Hodges, M. and Barber, J. (1986) Biochim. Biophys. Acta 848, 239–246CrossRefGoogle Scholar
  19. Horvath, G., Droppa, M. and Melis, A. (1984) Photobiochem. Photobiophys. 7, 249–256Google Scholar
  20. Horvath, G., Melis, A., Hideg, E., Droppa, M. and Vigh, L. (1987) Biochim. Biophys. Acta 891, 68–74CrossRefGoogle Scholar
  21. Klimov, Y.V., Klevanik, A.V., Shuvalov, Y.A. and Krasnovsky, A.A. (1977) FEBS Lett. 82, 183–186CrossRefPubMedGoogle Scholar
  22. Kyle, D.J., Haworth, P. and Arntzen, C.J. (1982) Biochim. Biophys. Acta 680, 336–342CrossRefGoogle Scholar
  23. Larsson, U.K. and Andersson, B. (1985) Biochim. Biophys. Acta 809, 396–402CrossRefGoogle Scholar
  24. Larsson, U.K., Ogren, E., Oquist, G. and Andersson, B. (1986) Photobiochem. Photobiophys. 13, 29–39Google Scholar
  25. Lavergne, J. (1982) Photobiochem. Photobiophys. 3, 257–285Google Scholar
  26. Malkin, S. (1971) Biochim. Biophys. Acta 234, 415–427CrossRefPubMedGoogle Scholar
  27. Malkin, S. and Michaeli, G. (1971) in Proc. Second International Congress on Photosynthesis (Forti, G., Avron, M. and Melandri, A., ed.), Vol. I, pp. 149–152Google Scholar
  28. Matoo, A.K. and Edelman, M. (1987) Proc. Natl. Acad. Sci. USA 84, 1497–1501CrossRefGoogle Scholar
  29. Matoo, A.K., Pick, U. Hoffman-Falk, H. and Edelman, M. (1981) Proc. Natl. Acad. Sci. USA 78, 1572–1576CrossRefGoogle Scholar
  30. McCauley, S.W. and Melis, A. (1987) Photochem. Photobiol. 46, 543–550CrossRefGoogle Scholar
  31. Melis, A. (1984) J. Cell Biochem. 24, 271–285CrossRefPubMedGoogle Scholar
  32. Melis, A. (1985) Biochim. Biophys. Acta 808, 334–342CrossRefGoogle Scholar
  33. Melis, A. and Anderson, J.M. (1983) Biochim. Biophys. Acta 724, 473–484CrossRefGoogle Scholar
  34. Melis, A. and Duysens, L.N.M. (1979) Photochem. Photobiol. 29, 373–382CrossRefGoogle Scholar
  35. Melis, A. and Homann, P.H. (1975) Photochem. Photobiol. 21, 431–437CrossRefGoogle Scholar
  36. Melis, A. and Homann, P.H. (1976) Photochem. Photobiol. 23, 343–350CrossRefPubMedGoogle Scholar
  37. Melis, A. and Thielen, A.P.G.M. (1980) Biochim. Biophys. Acta 589, 275–286CrossRefPubMedGoogle Scholar
  38. Percival, M.P., Webber, A.N. and Baker, N.R. (1984) Biochim. Biophys. Acta 767, 582–589CrossRefGoogle Scholar
  39. Ramanujam, P. and Bose, S. (1983) Photochem. Photobiol. 37, 77–80CrossRefGoogle Scholar
  40. Schreiber, U. and Pfister, K. (1982) Biochim. Biophys. Acta 680, 60–68CrossRefGoogle Scholar
  41. Sommerville, C.R. (1986) Ann. Rev. Plant Physiol. 37, 467–507CrossRefGoogle Scholar
  42. Staehelin, L.A. (1986) In, Encyclopedia of Plant Physiology, Photosynthesis III, Vol. 19, pp. 1–83, Springer-Verlag, BerlinGoogle Scholar
  43. Steinback, K.E., Bose, S. and Kyle, D.J. (1982) Arch. Biochem. Biophys. 216, 356–361CrossRefPubMedGoogle Scholar
  44. Sunby, CA., Melis, A., Maenpaa, P. and Andersson, B. (1986) Biochim. Biophys. Acta 851, 475–483CrossRefGoogle Scholar
  45. Thielen, A.P.G.M. and Van Gorkom, H.J. (1981a) Biochim. Biophys. Acta 635, 111–120CrossRefPubMedGoogle Scholar
  46. Thielen, A.P.G.M. and van Gorkom, H.J. (1981b) In, Photosynthesis, Proceedings of 5th International Congress (Akoyunoglou, G., ed,), Vol. II, pp. 57–64, Balaban International Science Services, Philadelphia, PAGoogle Scholar
  47. Thielen, A.P.G.M., Van Gorkom, H.J. and Rikjgersberg, CP. (1981) Biochim. Biophys. Acta 635, 121–131CrossRefPubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • A. Melis
    • 1
  • G. E. Guenther
    • 1
  • P. J. Morrissey
    • 1
  • M. L. Ghirardi
    • 1
  1. 1.Division of Molecular Plant BiologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations