Advertisement

Coupled Fluorescence and Reflectance Measurements to Improve Crop Productivity Evaluation

  • F. Baret
  • G. Guyot
  • D. Major

Abstract

The productivity of a plant canopy depends on the amont of photosynthetically active radiation (PAR) absorbed and on the efficiency of the transformation of absorbed PAR into dry matter.

The combination of reflectance measurements in red and near infrared spectral bands enables estimation of the absorbed PAR but photosynthetic efficiency can only be determined from chlorophyll fluorescence measurements. Since fluorescence intensity depends on chlorophyll concentration it is necessary to determine this first. High spectral resolution measurements for determination of the wavelength of the inflection point of the red edge can be used for detennining leaf chlorophyll content.

Using this approach, characterizing the potential productivity of a plant canopy is best done by coupling the measurements of reflectance with high spectral resolution and chlorophyll fluorescence.

Key-Words

Reflectance Fluorescence Crop Productivity Red edge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asrar G, Kanemasu ET, Jackson RD, Pinter PJ, 1985. Estimation of total above ground phytomass production using remotely sensed data. Remote Sens. Environ. 17: 211–220.Google Scholar
  2. Baret F, Champion I, Guyot G, Podaire A, 1987. Monitoring wheat canopies with a high spectral resolution radiometer. Remote Sens. Environ. 22: 367–378.Google Scholar
  3. Baret F, Major D, 1988. Significance of the normalized difference. In Remote Sensing Workshop on “Vegetation indices and their interpretation”. Nottingham (UK). 25 May 1988.Google Scholar
  4. Baret F., Andrieu B., Guyot G., 1988. Significance of the normalized difference. In Remote Sensing Workshop on “Vegetation indices and their interpretation”. Nottingham (UK). 25 May 1988.Google Scholar
  5. Gosse G, Varlet-Grancher C, Bonhomme R, Chartier M., Allirand JM, Lemaire G, 1986. Production maximale de matière sèche et rayonnement solaire intercepté par un couvert. Agronomie 6(1): 47–56.CrossRefGoogle Scholar
  6. Green CF, 1987. Nitrogen nutrition and wheat growth in relation to absorbed solar radiation. Agrie. Forest. Meteor. 41: 207–248.CrossRefGoogle Scholar
  7. Guyot G, Baret F, Major D, 1988. La haute résolution spectrale: détermination des déformations spectrales entre le rouge et le proche infrarouge. In Proc. 6ème Congrès de l’Association Québécoise de Télédétection. Sherbrooke (Canada). 3–6 May 1988.Google Scholar
  8. Hatfield JL, Asrar G, Kanemasu ET, 1984. Intercepted photosynthetically active radiation in wheat canopies estimated by spectral reflectance. Remo Rte Sens. Environ. 14: 65–75.CrossRefGoogle Scholar
  9. Horler DNH, Dockray M, Barber J, 1983. The red edge of plant leaf reflectance. Int. J. Rem. Sens. 4: 273–288.CrossRefGoogle Scholar
  10. Lichtenthaler HK, Buschmann C, Rinderle U, Schmuck G, 1986. Application of chlorophyll fluorescence in ecophysiology. Radiat. Environ. Biophy. 25: 297–308.CrossRefGoogle Scholar
  11. Lichtenthaler HK, Buschmann C, 1987a. Reflectance an chlorophyll fluorescence signatures of leaves. In Proc. IGARSS’87 Symp. Ann. Arbor. MI (USA). 18–21 May 1987. 1201–1206.Google Scholar
  12. Monteith JL, 1977. Climate and the efficiency of crop production in Britain. Phil. Trans. Roy. Soc. London. B 281: 277–294.CrossRefGoogle Scholar
  13. Sellers PJ, 1985. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 6(8): 1335–1372.CrossRefGoogle Scholar
  14. Schmuck G, Lichtenthaler HK, Kritikos G, Amann U, Rock B, 1987. Comparison of terrestrial and airborne reflection measurements of forest trees. In Proc. IGARSS’87 Symp. Ann. Arbor. MI (USA). 18–21 May 1987: 1207–1212.Google Scholar
  15. Varlet-Grancher C, Bonhomme R, Chartier M, Artis P, 1982. Efficience de la conversion de l’énergie solaire par un couvert végétal. Acta Oecologica Plant 3(17): 3–26.Google Scholar
  16. Verhoef W, 1984. Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens. Environ. 16: 125–141.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • F. Baret
    • 1
  • G. Guyot
    • 1
  • D. Major
    • 2
  1. 1.BioclimatologieINRA84140 MontfavetFrance
  2. 2.Agriculture CanadaLethbridgeCanada

Personalised recommendations