A definition of stress to plants and a general stress concept are presented including a list of possible major natural and anthropogenic stress factors. It is shown that the white light or laser-induced chlorophyll fluorescence of predarkened leaves is a very suitable tool for early stress detection in plants as well as for regeneration studies. The different chlorophyll fluorescence parameters to be measured are: variable fluorescence (ratio fmax/fo), the vitality index (fluorescence decrease ratio, Rfd-values), the stress adaption index Ap, the fluorescence spectra (ratio F690/F735) and the photochemical Q- and non-photochemical E-quenching (qQ and qE). Some examples of the measurement of these parameters under stress conditions are given.

Key Words

chlorophyll fluorescence Kautsky effect fluorescence ratio F690/F735 photosynthesis Rfd-values plant stressors stress concepts in plants stress detection by chlorophyll fluorescence vitality index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. HAITZ M and LICHTENTHALER HK, 1988. The measurement of Rfd-values as plant vitality index with the portable field fluororneter and the PAM-fluorometer. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed., pp.233–238, Kluwer Academic Publishers, Dordrecht (this volume).Google Scholar
  2. KOSCANYI L, HAITZ M and LICHTENTHALER HK, 1988. Measurement of laser-induced chlorophyll fluorescence kinetics using a fast acoustooptic device. In: Applications of Chlorophyll Fluorescence, LICHTENTHALER HK ed., pp. 91–99, Kluwer Academic Publishers Dordrecht (this volume).Google Scholar
  3. KRAUSE GH and WEIS E, 1984. Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals, Photosynth. Res. 5: 139–157.CrossRefPubMedGoogle Scholar
  4. LARCHER W, 1987. Stress bei Pflanzen. Naturwissenschaften 74: 158–167.CrossRefGoogle Scholar
  5. LEVITT J, 1980. Responses of plants to environmental stresses. Vol. 1, Academic Press, New York.Google Scholar
  6. LICHTENTHALER HK, 1984. Influence of environmental factors on composition and function of the photosynthetic apparatus. In: Advances in Photosynthesis Research, Sybesma C ed., Vol. IV, pp. 241–244, Martinus Nijhoff/Dr.W. Junk Publisher, The Hague.CrossRefGoogle Scholar
  7. LICHTENTHALER HK, 1986. Laser-induced chlorophyll fluorescence of living plants. In: Proceed. Remote Sensing Sensing Symp. IGARSS Zürich Vol. III, pp. 1587–1590, ESA Publications Division, Noordwijk.Google Scholar
  8. LICHTENTHALER HK, 1987. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J. Plant Physiol. 131: 101–110.CrossRefGoogle Scholar
  9. LICHTENTHALER HK and BUSCHMANN C, 1984a. Das Waldsterben aus botanischer Sicht, G. Braun Verlag Karlsruhe.Google Scholar
  10. LICHTENTHALER HK and BUSCHMANN C, 1984b. Photooxidative changes in pigment composition and photosynthetic activity of air-polluted spruce needles (Picea abies L.). In Advances in Photosynthesis Research Vol. IV, Sybesma C ed., pp. 245–250, Martinus Nijhoff Publisher, The Hague.CrossRefGoogle Scholar
  11. LICHTENTHALER HK and RINDERLE U, 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry 19, Suppl. I: S 29–S 85.Google Scholar
  12. LICHTENTHALER HK, BUSCHMANN C, DOLL M, FIETZ H-J, BACH T, KOZEL U, MEIER D and RAHMSDORF U, 1981. Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Res. 2: 115–141.CrossRefGoogle Scholar
  13. LICHTENTHALER HK, KUHN G, PRENZEL U, BUSCHMANN C and MEIER D, 1982. Adaptation of chloroplast-ultrastructure and of chlorophyl1-protein levels to high-light and low-light growth conditions. Z. Naturforsch. 37c: 464–475.CrossRefGoogle Scholar
  14. LICHTENTHALER HK, MEIER D and BUSCHMANN C, 1984. Development of chloroplasts at high and low quanta fluence rates. Israel J. Botany 33: 185–194.Google Scholar
  15. LICHTENTHALER HK, SCHMUCK G, DOLL M and BUSCHMANN C, 1985. Untersuchungen über die Funktionsfähigkeit des Photosyntheseapparates bei Nadeln gesunder und geschädigter Koniferen. In: PEF Bericht KfK-PEF2, pp. 81–105, Kernforschungszentrum, Karlsruhe.Google Scholar
  16. LICHTENTHALER HK, BUSCHMANN C, RINDERLE U and SCHMUCK G, 1986. Application of chlorophyll fluorescence in ecophysiology. Radiation Environmental Biophysics 25: 297–308.CrossRefPubMedGoogle Scholar
  17. LICHTENTHALER HK, RINDERLE U, KRITIKOS G and ROCK B, 1987. Classification of damaged spruce stands in the Northern Black Forest by airborne reflectance and terrestrial chlorophyll fluorescence measurements. In: 2nd DFVLR Status Seminar: Untersuchung und Kartierung von Waldschäden mit Methoden der Fernerkundung pp. 228–252, DFVLR Oberpfaffenhofen/München.Google Scholar
  18. MURATA N and SATOH K, 1986. Absorption and fluorescence emission by intact cells, chloroplasts, and chlorophyll-protein complexes. In: Light Emission by Plants and Bacteria. Govindjee, Amesz N and Fork DC eds., pp. 137–159, Academic Press Inc., Orlando.CrossRefGoogle Scholar
  19. RINDERLE U and LICHTENTHALER HK, 1988. The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed., pp. 176–183, Kluwer Academic Press, Dordrecht (this volume).Google Scholar
  20. ROCK BN, HOSHIZAKI T, LICHTENTHALER HK and G SCHMUCK, 1986. Comparision of in situ spectral measurements of forest decline symptoms in Vermont (USA) and the Schwarzwald (FRG). In: Proc. Internat. Geoscience Remote Sensing Symposium, IGARSS Zürich, Vol. III, pp. 1667–1672, ESA Publications Division, Noordwijk.Google Scholar
  21. SCHREIBER U, SCHLIWA U and BILGER W, 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynth. Res. 10:51–62.CrossRefPubMedGoogle Scholar
  22. SCHMUCK G and LICHTENTHALER HK, 1986. Application of laser-induced chlorophyll a fluorescence in the forest decline research. In: Proc. Internat. Geoscience and Remote Sensing Symposium, Igarss Zürich, Vol. III, pp. 1587–1590, ESA Publications Division, Noordwijk.Google Scholar
  23. ŠIFFEL LP and ŠESTáK Z, 1988. Low temperature fluorescence spectra of chloroplasts: methodical aspects and possible applications. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed., pp. 50–56, Kluwer Academic Press, Dordrecht (this volume).Google Scholar
  24. STRASSER RJ, 1986. Laser-induced fluorescence of plants and its application to environmental research. In: Proc. Internat. Geoscience Remote Sensing Symposium, Igarss Zürich, Vol. III, pp. 1581–1585, ESA Publications Division, Noordwijk.Google Scholar
  25. STRASSER R, SCHWARZ B and BUCHER J, 1987. Simultane Messung der Chlorophyll-Fluoreszenz Kinetik bei verschiedenen Wellenlängen als rasches Verfahren zur Frühdiagnose von Immissionsbelastungen an Waldbäumen. Ozoneinwirkung auf Buchen und Pappeln. Europ. J. Forest Pathology 17: 149–157.CrossRefGoogle Scholar
  26. WEIS E, 1984. Short term acclimation of spinach to high temperatures. Effect on chlorophyll fluorescence at 293 and 77 Kelvin in intact leaves. Plant Physiol. 74:402–407.CrossRefPubMedPubMedCentralGoogle Scholar
  27. WHITMORE EM and FREER-SMITH PH, 1982. Growth effects of SO2. and/or NO2 on woody plants and grasses during spring and summer. Nature 300: 55–57.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Hartmut K. Lichtenthaler
    • 1
  1. 1.Botanisches Institut II (Plant Physiology and Plant Biochemistry)University of KarlsruheKarlsruhe 1Germany

Personalised recommendations