Infiltration and Ponding Time

  • J.-Y. Parlange
  • R. Haverkamp
Part of the NATO ASI Series book series (ASIC, volume 275)


Existing models describing infiltration and ponding time are described and their limitations discussed in detail. A physically based model which can include numerous effects, like variable rainfall rates, surface sealing, layering and others, is presented and is shown, by comparison with reference solutions, to be accurate and reliable for prediction purposes. Such analytical approximations are especially useful to initiate numerical solutions for complex situations and validate numerical schemes. The latter purpose can also be fulfilled by exact solutions in a few restricted situations.


Sandy Soil Clay Soil Coarse Sand Initial Water Content Surface Boundary Condition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Boulier, J.F., J. Tourna, and M. Vauclin. 1984. ‘Flux-concentration relation-based solution of constant-flux infiltration equation: I. Infiltration into nonuniform initial moisture profiles.’ Soil Sci. Soc. Am. J. 48:245–251.CrossRefGoogle Scholar
  2. Boulier, J. F., J. -Y. Parlange, M. Vauclin, D. A. Lockington and R. Haverkamp. 1987. ‘Upper and lower bounds of the ponding time for near constant surface flux.’ Soil. Sci. Soc. Amer. J. 51:1424–1428.CrossRefGoogle Scholar
  3. Bouwer, H. 1964. ‘Unsaturated flow in ground-water hydraulics.’ J. Hydraul. Div., Am. Soc. Civ. Eng. 90 (5):121–127.Google Scholar
  4. Brooks, R.H., and T.H. Corey, 1964. Hydraulic properties of porous media. Hydrology paper 3. Colorado State Univ., Fort Collins, U.S.A.Google Scholar
  5. Brustkern, R.L. and H.J. Morel-Seytoux, 1970. ‘Analytical treatment of two-phase infiltration.’ Proc. ASCE, J. of Hydraulics Div., 96(12):235–2548.Google Scholar
  6. Brutsaert, W., 1966. ‘Probability Laws for pore-size distributions.’ Soil Sci., 101:85–92.CrossRefGoogle Scholar
  7. Chong, S.F. 1983. ‘Calculation of Sorptivity from constant-rate rainfall infiltration measurement.’ Soil Sci. Soc. Am. J. 47:627–630.CrossRefGoogle Scholar
  8. Gardner, W.R., D. Hillel, and Y. Benyamini, 1970. ‘Post-irrigation movement of soil water: 1. Redistribution.’ Water Resources Res., 6:851–861.CrossRefGoogle Scholar
  9. Green, W.A., and G.A. Ampt, 1911. Studies on soil physics, 1. ‘The flow of air and water through soils.’ J. Agr. Sci., 4:1–24.CrossRefGoogle Scholar
  10. Haverkamp, R., M. Vauclin, Y. Tourna, P. Wierenga, and G. Vachaud, 1977. ‘A comparison of numerical simulation models for one-dimensional infiltration.’ Soil Sci. Soc. Amer. J., 41:285–294.CrossRefGoogle Scholar
  11. Haverkamp, R. and M. Vauclin, 1981. ‘A comparative study of three forms of the Richards equation used for predicting one-dimensional infiltration in unsaturated soils.’ Soil Sci. Soc. Amer. J., 45:13–20.CrossRefGoogle Scholar
  12. Haverkamp, R., 1983. ‘Résolution de l’équation d’infiltration de l’eau dans le sol, Approches analytiques et numériques’, thèse de Docteur ès-Sciences Physiques, Univ. Scientifique et Médicale de Grenoble, France.Google Scholar
  13. Haverkamp, R., and J. -Y. Parlange, 1988. ‘Infiltration under ponded conditions: 3.’ Submitted to Soil Sci.Google Scholar
  14. Horton, R. E., 1940. ‘An approach towards a physical interpretation of infiltration capacity.’ Soil Sci. Soc. Am. Proc., 5:399–417.CrossRefGoogle Scholar
  15. Kostiakov, A.N., 1932. ‘On the dynamics of the coefficient of water percolation in soils and on the necessity of studying it from a dynamic point of view for purposes of amelioration.’ Trans. Com. Int. Soc. Soil Sci., 6th Moscow, A:17–21.Google Scholar
  16. Kunze, R.J., and D.R. Nielsen. 1982. ‘Finite difference solutions of the infiltration equation.’ Soil Sci. 134:81–88.CrossRefGoogle Scholar
  17. Kunze, R.J., J. -Y. Parlange and C.W. Rose, 1985. ‘A comparison of numerical and optimization techniques for describing capillary rise.’ Soil Sci., 139:491–496.CrossRefGoogle Scholar
  18. Kutilek, M. 1980. ‘Constant-rainfall infiltration.’ J. Hydrol. 45:289–303.CrossRefGoogle Scholar
  19. Laliberte, G.E., 1969. ‘A mathematical function for describing capillary pressure desaturation data.’ Bull. Int. Ass. Sci. Hydrol., 14:131–149.CrossRefGoogle Scholar
  20. Mein, R. G., and C. L. Larson. 1973. ‘Modeling infiltration during a steady rain.’ Water Resour. Res. 9:384–394.CrossRefGoogle Scholar
  21. Moore, R.E., 1939. ‘Water conduction from shallow water tables.’ Hilgardia, 12:383–426.Google Scholar
  22. Morel-Seytoux, HJ. 1969. ‘Introduction to flow of immissible liquids in porous media.’ Chap. 11 in Flow through porous media. RJ.M. de Wiest, editor, Academic Press:455–516.Google Scholar
  23. Morel-Seytoux, HJ., 1976. ‘Derivation of equations for rainfall infiltration.’ J. Hydrol.31:203–219.CrossRefGoogle Scholar
  24. Morel-Seytoux, H.J., 1978. ‘Derivation of equations for variable rainfall infiltration.’ Water Resour. Res., 14(4):561–568.CrossRefGoogle Scholar
  25. Morel-Seytoux, H.J. 1981. ‘Application of Infiltration theory for the determination of excess rainfall hyetograph.’ Water Resources Bulletin, 17(6):1012–1022.Google Scholar
  26. Morel-Seytoux, H J. 1982. ‘Analytical results for predition of variable rainfall infiltration.’ J. Hydrol. 59:209–230.CrossRefGoogle Scholar
  27. Morel-Seytoux, HJ. 1986. ‘One-dimensional infiltration in homogeneous soils: A combined analytical-numerical approach.’ Annales Geophysicae, 4, B, 5:517–528.Google Scholar
  28. Morel-Seytoux, H.J., and D. Khanji, 1974. ‘Derivation of an equation of infiltration.’ Water Resour. Res., 10:795–800.CrossRefGoogle Scholar
  29. Neuman, S.P. 1976. ‘Wetting front pressure head in the infiltration model of Green and Ampt.’ Water Resour. Res. 12(3):564–566.CrossRefGoogle Scholar
  30. Ogrosky, H.O. and V. Mockus. 1964. ‘Hydrology of agricultural lands.’ In Handbook of applied hydrology. V.T. Chow, editor. McGraw Hill, NY.Google Scholar
  31. Parlange, J.-Y., 1971. Theory of water movement in soils: 2. One-dimensional infiltration.’ Soil Sci., 111:170–174.CrossRefGoogle Scholar
  32. Parlange, J.Y. 1972. ‘Theory of water movement in soils: 8. One-dimensional infiltration with constant flux at the surface.’ Soil Sci. 114:1–4.CrossRefGoogle Scholar
  33. Parlange, J.-Y, 1975. ‘On solving the flow equation in unsaturated soils by optimization: Horizontal infiltration.’ Soil Sci. Soc. Am. Proc. 39:415–418.CrossRefGoogle Scholar
  34. Parlange, J.-Y., I. Lisle, R.D. Braddock and R.E. Smith, 1982. ‘The three-parameter infiltration equation.’ Soil Sci., 133:337–341.CrossRefGoogle Scholar
  35. Parlange, J.-Y., R. Haverkamp, and J. Tourna, 1985. ‘Infiltration under ponded conditions: 1. Optimal analytical solution and comparison with experimental observations.’ Soil Sci., 139:305–311.CrossRefGoogle Scholar
  36. Parlange, J.Y., and R.E. Smith 1976. ‘Ponding time for variable rainfall rates.’ Can. J. Soil Sci. 56:121–123.CrossRefGoogle Scholar
  37. Parlange, J. -Y., J.L. Starr, R. Haverkamp, 1988. ‘Research needs in infiltration theory.’ Am. Soc. Ag. Eng. Paper No. 87–2537.Google Scholar
  38. Perroux, K.M., D.E. Smiles, and I. White. 1981. ‘Water movement in uniform soils during constant flux infiltration.’ Soil Sci. Soc. Am. J. 45:237–240.CrossRefGoogle Scholar
  39. Philip, J.R. 1955. ‘Numerical solution of equations of the diffusion type with diffusivity concentration-dependent: 1.’ Trans. Faraday Soc. 51:885–892.CrossRefGoogle Scholar
  40. Philip, J. R., 1957a. ‘Numerical solution of equations of the diffusion type with diffusivity concentration-dependent II.’ Austr. J. of Physics, 10:29–42.CrossRefGoogle Scholar
  41. Philip, J.R., 1957b. ‘The theory of infiltration: 4. Sorptivity and algebraic infiltration equations.’ Soil Sci., 84:257–264.CrossRefGoogle Scholar
  42. Philip, J. R., 1969. ‘Theory of infiltration.’ Adv. Hydrosc, 5, Academic Press, N.Y.,:215–305.Google Scholar
  43. Philip, J.R., 1973. ‘On solving the unsaturated flow equation: 1. The flux-concentration relation.’ Soil Sci., 116:328–335.CrossRefGoogle Scholar
  44. Rawls, W.J., and D.L. Brakensiek, 1983. ‘A procedure to predict Green and Ampt infiltration parameters.’ Proc. Nat. Conf. on Advances in Infiltration, ASAE, Chicago, pp. 102–112.Google Scholar
  45. Rendon, L., 1987. ‘L’irrigation à la planche: développement et évaluation d’un nouveau modèle hydrologique pour simuler et prédire l’avancement du front couplé à l’infiltation.’ Thèse de Docteur Ingénieur,Université Scientifique et Médicale de Grenoble, France.Google Scholar
  46. Richards, L.A., 1931. ‘Capillary conduction of liquids through porous medium.’ Physics, 1:318–333.CrossRefGoogle Scholar
  47. Smith, R.E., and J.Y. Parlange. 1977. ‘Optimal prediction of ponding.’ Trans. ASAE 20:493–496.Google Scholar
  48. Smith, R.E., and J.Y. Parlange. 1978. ‘A parameter-efficient hydrologie infiltration model.’ Water Resour. Res. 14:533–538.CrossRefGoogle Scholar
  49. Smith, R.E. 1972. ‘The infiltration envelope: Results from a theoretical infiltrometer.’ J. Hydrol. 17:1–21.CrossRefGoogle Scholar
  50. Smith, R.E. and Chery, D. L. 1973. ‘Rainfall excess model from soil water flow theory.’ J. Hydrol. Div. ASCE 99:1337–1351.Google Scholar
  51. Snedecor, G.W., and W.G. Cochran, 1980. ‘Statistical methods.’ The Iowa State Univ. Press, Ames.Google Scholar
  52. Swartzendruber, D., 1974. ‘Infiltration of constant flux rainfall into soil as analyzed by the approach of Green and Ampt.’ Soil Sci. 117:272–281.CrossRefGoogle Scholar
  53. Talsma, T., and J. -Y. Parlange, 1972. ‘One-dimensional infiltration.’ Aust. J. Soil Res. 10:143–150.CrossRefGoogle Scholar
  54. Tourna, J., G. Vachaud, and J. Y. Parlange, 1984. ‘Air and water flow in a sealed ponded vertical soil column.’ Soil Sci., 137:181–187.CrossRefGoogle Scholar
  55. Van Genuchten, M. Th., 1980. ‘A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.’ Soil Sci. Soc. Amer. J. 44:892–898.CrossRefGoogle Scholar
  56. White, I., D.E. Smiles, and K.M. Perroux. 1979. ‘Absorption of water by soil: The constant flux boundary condition.’ Soil Sci. Soc. Am. J. 43:659–664.CrossRefGoogle Scholar
  57. Youngs, E.G., 1968. ‘An estimation of sorptivity for infiltration studies from moisture moment considerations.’ Soil Sci. 106:157–163.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J.-Y. Parlange
    • 1
  • R. Haverkamp
    • 2
  1. 1.Agricultural and Biological EngineeringCornell UniversityIthacaUSA
  2. 2.Institut de MecaniqueGrenoble CedexFrance

Personalised recommendations