Visualization and Interpretation of Plant Isozymes

  • Jonathan F. Wendel
  • Norman F. Weeden


Gel electrophoresis of proteins has become a standard and powerful research tool for application in a multitude of biological disciplines. One form of protein electrophoresis, isozyme analysis, has become particularly prominent in systematic and evolutionary biology as well as agronomy (Tanksley and Orton, 1983). Isozymes, or multiple molecular forms of enzymes, are enzymes that share a common substrate but differ in electrophoretic mobility (Markert and Moller, 1959). They are revealed when tissue extracts are subjected to electrophoresis in various types of gels and subsequently submersed in solutions containing enzyme-specific stains. Genetic analysis may indicate that some of the variant electromorphs are encoded by alternate alleles at a single locus, in which case the allelic products are termed allozymes (Prakash et al., 1969). Data retrieved from electrophoretic gels consist of the number and relative mobilities of various enzyme products, which with appropriate genetic analyses become transformed into single or multilocus genotypes for each individual analyzed. Reasons are many for the popularity of electrophoretic data (Avise, 1975; Gottlieb, 1977; Crawford, 1983), but foremost among these is that isozymes provide a series of readily scored, single-gene markers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Allard. R. W. 1950. Formulas and tables to facilitate the calculation of recombination values in heredity. Hilgadia 24: 235–278.Google Scholar
  2. Anderson, J. W. 1968. Extraction of enzymes and subcellular organelles from plant tissues. Phytochemistry 7: 1973–1988.Google Scholar
  3. Anderson. J. W., and K. S. Rowan. 1967. Extraction of soluble leaf enzymes with thiols and other reducing agents. Phytochemistry 6: 1047–1056.Google Scholar
  4. Arulsekar, S.. D. E. Parfitt, W. Beres. and P. E. Hansche. 1986. Genetics of malate dehydrogenase isozymes in the peach. J. Heredity 77: 49–51.Google Scholar
  5. Ashton, G. C., and A. W. H. Braden. 1961. Serum β-globuIin polymorphism in mice. Austral. J. Biol. Sci 14: 246–254.Google Scholar
  6. Avise, J. C. 1975. Systematic value of electrophoretic data. Syst. Zool 23: 465–461.Google Scholar
  7. Bailey, N.T.J. 1961. Introduction to the mathematical theory of genetic linkage. Clarendon Press, Oxford.Google Scholar
  8. Barka, T. 1960. A simple azo-dye method for histochemical demonstration of acid phosphatase. Nature 187: 248–249.PubMedGoogle Scholar
  9. Barratt. D. H. P. 1980. Method for the detection of glutamine synthetase activity on starch gels. PI. Sci. Lett 18: 249–255.Google Scholar
  10. Baum, J. A., and J. G. Scandalios. 1979. Developmental expression and intracellular localization of superoxide dismutases in maize. Differentiation 13: 133–140.Google Scholar
  11. Bayer, R. J., and D. J. Crawford. 1986. Allozyme divergence among five diploid species of Antennaria (Asteraceae: Inuleae) and their allopolyploid derivatives. Amer. J. Bot 73: 287–296.Google Scholar
  12. Beauchamp. C. O., and I. Fridovich. 1971. Superoxide dismutase: improved assays and assay applicable to acrylamide gels. Analytical Biochem. 44: 276–267.Google Scholar
  13. Blackshear. P. J. 1984. Systems for polyacrylamide gel electrophoresis. Methods in Enzymol. 104: 237–255.Google Scholar
  14. Brewbaker, J. L. 1971. Pollen enzymes and isoenzymes. In J. Heslop-Harrison [ed.], Pollen development and physiology. 156–170. Butterworth’s, London.Google Scholar
  15. Brewer, G. J., and C. F. Sing. 1970. An introduction to isozyme techniques. Academic Press. New York.Google Scholar
  16. Brown. A. H. D., E. Nevo, D. Zohary, and O. Dagan. 1978. Genetic variation in natural populations of wild barley (Hordeum spontaneum). Genetica 49: 97–108.Google Scholar
  17. Buth, D. G., and R. W. Murphy. 1980. Use of nicotinamide adenine dinucleotide (NAD)-dependent glucose-6-phosphate dehydrogenase in enzyme staining procedures. Stain Technology 55: 173–176.PubMedGoogle Scholar
  18. Cardy, B.J., C. W. Stuber, J. F. Wendel, and M. M. Goodman. 1983. Techniques for starch gel electrophoresis of enzymes from maize (Zea mays L.). Inst. Stat. Mimeo. No. 1317R. North Carolina State University, Raleigh.Google Scholar
  19. Cerff. R. 1982. Evolutionary divergence of chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from angiosperms. Eur. J. Biochem 126: 513–515.PubMedGoogle Scholar
  20. Cheliak, W. M., and J. A. Pitel. 1984. Genetic control of allozyme variants in mature tissues of white spruce trees. J. Heredity 75: 34–40.Google Scholar
  21. Chrambach. A. 1980. Electrophoresis and electrofocusing on polyacrylamide gels in the study of native macromolecules. Mol. Cell. Biochem 29: 23–46.PubMedGoogle Scholar
  22. Chrambach. A., and D. Rodbard. 1971 Polyacrylamide gel electrophoresis. Science 172: 440–451.PubMedGoogle Scholar
  23. Clayton, J. W., and D. N. Tretiak. 1972. Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Board Can 29: 1169–1172.Google Scholar
  24. Conkle, M. T., P. D. Hodgskiss, L. B. Nunnaly, and S. C. Hunter. 1982. Starch gel electrophoresis of conifer seeds: a laboratory manual. General Technical Report PSW-64. U.S.D.A. Forest Service Pacific Southwest Forest and Range Experiment Station, Berkeley.Google Scholar
  25. Coyne, J. 1981. Gel electrophoresis and cryptic protein variation. In M. L. Rattazzi,]. G. Scandalios, G. S. Whitt [eds.], Isozymes: current topics in biological and medical research. Vol. 6, 1–32. Alan R. Liss, New York.Google Scholar
  26. Crawford, D. J. 1983. Phylogenese and systematic inferences from electrophoretic studies. In S. D. Tanksley and T. J. Orton [eds.], Isozymes in plant genetics and breeding, Part A, 257–287. Elsevier, Amsterdam.Google Scholar
  27. Crawford, D. J., and H. D. Wilson. 1977. Allozyme variation in Chenopodium fremontii. Syst. Bot. 2: 180–190.Google Scholar
  28. Cullis, C. A. 1979. Segregation of the isozymes of flax genotrophs. Biochem. Genet 17: 391–401.PubMedGoogle Scholar
  29. Doebley, J. F.. C. W. Morden, and K. F. Schertz 1986. A gene modifying mitochondrial malate dehydrogenase isozymes in Sorghum (Gramineae). Biochem. Genet 24: 813–619.PubMedGoogle Scholar
  30. Ellstrand. N. C., and D. L. Marshall. 1985. The impact of domestication on distribution of allozyme variation within and among cultivars of radish. Raphanus sativus L. Theor. Appl. Genet 69: 393–398.Google Scholar
  31. Endo, T. 1981. Developmental modification and hybridization of allelic acid phosphatase isozymes in homo- and heterozygotes for the Acp-1 locus in rice. Biochem. Genet 19: 373–384.PubMedGoogle Scholar
  32. Farinelli, M. P., D. W. Fry, and K. E. Richardson. 1983. Isolation, purification, and partial characterization of formate dehydrogenase from soybean seed. PI. Physiol 73: 858–859.Google Scholar
  33. Fildes, R. A., and H. Harris. 1988. Genetically determined variation of adenylate kinase in man. Nature 209: 262–263.Google Scholar
  34. Gabriel. O. 1971. Locating enzymes on gels. Methods in Enzymol. 22: 578–604.Google Scholar
  35. Gastony, G. J., and D. C. Darrow. 1983. Chloroplastic and cytosolic isozymes of the homosporous fem Athyrium filix-femina L. Amer. J. Bot 70: 1409–1415.Google Scholar
  36. Gastony, G. J., and L. D. Gottlieb. 1982. Evidence for genetic hcterozygosity in a homosporous fern. Amer. J. Bot 69: 634–637.Google Scholar
  37. Gastony, G. J., and D. C. Darrow. 1985. Genetic variation in the homosporous fern Pellaea andromedifolia. Amer. J. Bot 72: 257–267.Google Scholar
  38. Goodman. M. M.. and C. W. Stuber. 1983. Maize. In S. D. Tanksley and T. J. Orton [eds.]. Isozymes in plant genetics and breeding. Part B, 1–33. Elsevier. Amsterdam.Google Scholar
  39. Goodman. M. M., C. W. Stuber, C. N. Lee. and F. M. Johnson. 1980. Genetic control of malate dehydrogenase isozymes in maize. Genetics. 94: 153–168.PubMedGoogle Scholar
  40. Gottlieb. L. D. 1977. Electrophoretic evidence and plant systematics. Ann. Missouri Bot. Gard 64: 161–180.Google Scholar
  41. Gottlieb. L. D., 1979. The origin of phenotype m a recently evolved species In S. Jain, G. B. Johnson, and P. Raven [eds.]. Topics in plant population biology. 264–286. Columbia Univ. Press, New York.Google Scholar
  42. Gottlieb. L. D. 1981. Electrophoretic evidence and plant populations. Prog. Phytochem 7: 1–46.Google Scholar
  43. Gottlieb. L. D. 1982. Conservation and duplication of isozymes in plants. Science 216: 373–380.PubMedGoogle Scholar
  44. Gottlieb. L. D., 1984. Electrophoretic analysis of the phylogeny of the self-pollinating populations of Clarkia xantiana. Pl. Syst. Evol. 147: 91–102.Google Scholar
  45. Guries. R. P.. and F. T. Ledig. 1978. Inheritance of some polymorphic isoenzymes in pitch pine (Pinus rigida Mill.). Heredity 20: 27–32.Google Scholar
  46. Hames. H. D., and D. Rickwood [eds.]. 1981. Gel electrophoresis of proteins: a practical approach. IRL Press. Washington. D.C.Google Scholar
  47. Harris, H., and D. A. Hopkinson. 1976. Handbook of enzyme electophoresis in human genetics. North Holland. Amsterdam.Google Scholar
  48. Harry, D. E. 1983. Identification of a locus modifying the electrophoretic mobility of malate dehydrogenase isozymes in incense-cedar (Calocedrus decurrens), and its implications for population studies. Biochem. Genet. 21: 417–434.Google Scholar
  49. Harry, D. E., 1986. Inheritance and linkage of isozyme variants in incense-cedar. J. Heredity 77: 261–266.Google Scholar
  50. Haufler. C. H., and D. E. Soltis. 1984. Obligate outcrossing in a homosporous fern: field confirmation of a laboratory prediction. Amer. J. Bot. 71: 878–681.Google Scholar
  51. Heeb, M. J., and O. Gabriel. 1984. Enzyme localization in gels. Methods in Enzymol. 104: 416–439.Google Scholar
  52. Hughes, D. L. 1981. Identification and translocation of carbohydrates in the cantaloupe (Cucumis melo var. reticulatus) plant and the fate of stachyose during fruit development. Ph.D. thesis. University of California, Davis.Google Scholar
  53. International Union of Biochemistry Nomenclature Committee. 1984. Enzyme nomenclature 1964. Academic Press, New York.Google Scholar
  54. Isola. M. C.. and L. Franzoni. 1981. Changes in electrophoretic pattern of ribonucleases during aging of potato tuber slices. Z. Pflanzenphysiol 103: 277–283.Google Scholar
  55. Jaaska, V. 1982. Isoenzymes of superoxide dismutase in wheats and their relatives: alloenzyme variation. Biochem. Physiol. Pflanzen 177: 747–755.Google Scholar
  56. Jarret, R. L., and R. E. Litz. 1986. Enzyme polymorphism in Musa acuminata Colla. J Heridity 77: 183–188.Google Scholar
  57. Jenkins, C. L. D., and V. J. Russ. 1984. Laige scale, rapid preparation of functional mesophyll chloroplasts from Zea mays and other C4 species. PI. Sci. Lett 35: 19–24.Google Scholar
  58. Johnson, F. M., and H. E. Schaffer. 1974. An inexpensive apparatus for horizontal gel electrophoresis. Isozyme Bull. 7: 4–6.Google Scholar
  59. Kahler, A. L. 1983. Inheritance and linkage of acid phosphatase locus Acp4 in maize. J. Heredity 74: 239–246.Google Scholar
  60. Kelley, W. A., and R. P. Adams. 1977a. Preparation of extracts from juniper leaves for electrophoresis. Phytochemistry 16: 513–516.Google Scholar
  61. Kelley, W. A., and R. P. Adams. 1977b. Seasonal variation of isozymes in Juniperus scopulorum: systematic significance. Amer. J. Bot 64: 1092–1096.Google Scholar
  62. Kiang, Y. T. 1981. Inheritance and variation of amylase in cultivated and wild soybeans and their wild relatives. J. Heredity 72: 382–386.Google Scholar
  63. King. E. E. 1971. Extraction of cotton leaf enzymes with borate. Phytochemistry 10: 2337–2341.Google Scholar
  64. Leaback. D. H. 1976. Concentration gradient polyacrylamide gel electrophoresis. In I. Smith [ed.]. Chromatographic and electrophoretic techniques, Vol. II. 250–271. Heinemann Medical Books, London.Google Scholar
  65. Loomis, W. D. 1969. Removal of phenolic compounds during the isolation of plant enzymes. Methods in Enzymol. 13: 555–563.Google Scholar
  66. Loomis, W. D. 1974. Overcoming problems of phenolics and quinones in the isolation of plant enzymes and organelles. Methods in Enzymol. 31: 528–544.Google Scholar
  67. Loomis, W. D., and J. Battaile. 1966. Plant phenolic compounds and the isolation of plant enzymes. Phytochemistry 5: 423–438.Google Scholar
  68. Loukas, M.. Y. Vergini. and C. B. Krimbas. 1983. Isozyme variation and heterozygosity in Pinus halepensis L. Biochem. Genet 21: 497–509.PubMedGoogle Scholar
  69. Lourenco, E. J., and V. A. Neves. 1984. Partial purification and some properties of shikimate dehydrogenase from tomatoes. Phytochemistry 23: 497–499.Google Scholar
  70. Lowrey, T. K., and D. J. Crawford. 1985. Allozyme divergence and evolution in Tetramolopium ( Compositae: Astereae) in the Hawaiian Islands. Syst. Bot. 10: 64–72.Google Scholar
  71. Mcleod. M. J., S. I. Guttman, and W. H. Eshbaugh. 1981. LDH in Capsicum (Solanaceae) leaves. Isozyme Bull. 14: 76.Google Scholar
  72. Markert, C. L.. and L. Faulhaber. 1965. Lactate dehydrogenase isozyme patterns of fish. J. Exp. Zool 159: 319–332.PubMedGoogle Scholar
  73. Markert, C. L., and F. Moller. 1959. Multiple forms of enzymes: tissue, ontogenetic and species specific patterns. Proc. Natl. Acad. Sci. USA 45: 753–763.PubMedGoogle Scholar
  74. Marshall, D. R., and A. H. D. Brown. 1975. The charge state model of protein polymorphism in natural populations. J. Mol. Evol 6: 149–163.PubMedGoogle Scholar
  75. Mather, K. 1951. The measurement of linkage in heredity, Second Edition, John Wiley, New York.Google Scholar
  76. Meizel, S., and G. L. Markert. 1967. Malate dehydrogenase isozymes of the marine snail Ilyanassa obsoleta. Arch. Biochem. Biophys. 122: 753–765.Google Scholar
  77. Micales, J. A., M. R. Bonde. and G. L. Peterson. 1080. The use of isozyme analysis in fungal taxonomy and genetics. Mycotaxon 27: 405–449.Google Scholar
  78. Millar. C. I. 1985. Inheritance of allozyme variants in bishop pine (Pinus muricata D. Don.). Biochem. Genet 23: 933–946.PubMedGoogle Scholar
  79. Morden, C. W., J. F. Doebley, and K. F. Schertz. 1987. A manual of techniques for starch gel electrophoresis of Sorghum isozymes. Texas Agric. Expt. Sta. Misc. Publ. No. 1635. College Station.Google Scholar
  80. Mulcahy, D. L., C. B. Mulcahy, and R. W. Robinson. 1979. Evidence for post-meiotic genetic activity in pollen of Cucurbita species. J. Heredity 70: 365–368.Google Scholar
  81. Murray, D. R., and S. P. Waters. 1985. Multiple forms of aminopeptldase in representatives of the tribe Vicieae (Leguminosae). Austral. J. PI. Physiol 12: 39–45.Google Scholar
  82. Neale. D. B., and W. T. Adams. 1981. Inheritance of isozyme variants in seed tissues of balsam fir (Abies balsamea). Canad. J. Bot 59: 1285–1291.Google Scholar
  83. Neale. D. B., J. C. Weber, and W. T. Adams. 1984. Inheritance of needle tissue isozymes in douglas-fir. Canad. J. Genet. Cytol 26: 459–168.Google Scholar
  84. Newton, K.J. 1983. Genctics of mitochondrial isozymes. In S.D. Tanksley and T.J. Orton [eds.]. Isozymes in plant genetics and breeding. Part A, 157–174. Elsevier, Amsterdam.Google Scholar
  85. Nickrent. D. L. 1986. Genetic polymorphism in the morphologically reduced dwarf mistletoes [Arceuthobium. Viscaceae): an electrophoretic study. Amer. J. Bot. 73: 1492–1502.Google Scholar
  86. Nimmo. H. G., and G. A. Nimmo. 1982. A general method for the localization of enzymes that produce phosphate, pyrophosphate, or CO2 after polyacrylamide gel electrophoresis. Anal. Biochem 121: 17–22.PubMedGoogle Scholar
  87. Nordheim. E. V.. D. M. O’Malley. and R. P. Curies. 1983. Estimation of recombination frequency in genetic linkage studies. Theor. Appl. Genet 66: 313–321.Google Scholar
  88. Odrzykoski, I. J., and L. D. Gottlieb. 1984. Duplications of genes coding 6-phosphogluconate dehydrogenases in Clarkia (Onagraceae) and their phylogenetic implications. Syst. Bot 9: 479–489.Google Scholar
  89. O’Malley, D., N. C. Wheeler, and R. P. Guries. 1980. A manual for starch gel electrophoresis. Staff Paper Series 11. Dept. Forestry. College of Agric. and Life Sciences, University of Wisconsin, Madison.Google Scholar
  90. Oncelay, C. Y., L. S. Daley, H. M. Vines. G. A. Couvillon, and C. H. Hendershott. 1979. Seasonal fluctuation in malate dehydrogenase, phosphatase, and proteinase activity of dormant peach buds. Scientia Hort. 11: 229–239.Google Scholar
  91. Ostrowski, W. 1983. Electrophoretic examination of enzymes. J. Chromatogr. Libr 18B: 287–339.Google Scholar
  92. Ott. L., and J. G. Scandalios. 1978. Genetic control and linkage relationships among aminopeptidases of maize. Genetics 89: 137–146.PubMedGoogle Scholar
  93. Pichersky. E., L. D. Gottlieb, and R. C. Higgins. 1984. Hybridization between subunits of triose phosphate isomerase isozymes from different subcellular compartments of higher plants. Mol. Gen. Genet 193: 158–161.Google Scholar
  94. Pierpoint, W. S. 1966. Enzymic oxidation of chlorogenic acid and some reactions of the quinone produced. Biochem. J 98: 567–580.PubMedGoogle Scholar
  95. Pitel, J. A., and W. M. Cheliak. 1984. Effect of extraction buffers on characterization of isoenzymes from vegetative tissues of five conifer species: a users manual. Information Report PI-X-34, Petawawa National Forestry Inst.. Can. Forest Service.Google Scholar
  96. Poulik. M. D. 1957. Starch gel electrophoresis in a discontinuous system of buffers. Nature 180: 1477–1479.PubMedGoogle Scholar
  97. Prakash, S., R. C. Lewontin, and J. L. Hubby. 1969. A molecular approach to the study of genie heterozygosity in natural populations. IV. Patterns of genie variation in central, marginal and isolated populations of Drosophila pseudobscura. Genetics 61: 841–858.PubMedGoogle Scholar
  98. Quail, P. H. 1979. Plant cell fractionation. Ann. Rev. PJ. Physiol 30: 425–484.Google Scholar
  99. Quiros. C. F., and K. Morgan. 1981. Peroxidase and leucine-aminopeptidase in diploid Medicago species closely related to alfalfa: multiple gene loci, multiple allelism. and linkage. Theor. Appl. Genet 60: 221–228.Google Scholar
  100. Ranker, T. A., and C. R. Werth. 1986. Active enzymes from herbarium specimens: electrophoresis as an afterthought. Amer. Fern J 76: 102–113.Google Scholar
  101. Rick, C. M., and J. F. Fobes. 1975. Allozyme variation in the cultivated tomato and closely related species. Bull. Torrey Bot. Club 102: 376–384.Google Scholar
  102. Rick, C. M., and S. D. Tanksley. 1981. Genetic variation in Solanum pennellii: comparisons with two other sympatric tomato species. PI. Syst. Evol 139: 11–45.Google Scholar
  103. Ridgeway. G. J., S. W. Sherburne, and R. D. Lewis. 1970. Polymorphisms in the esterases of Atlantic herring. Trans. Amer. Fisheries Soc 99: 147–151.Google Scholar
  104. Rieseberg. L.H.. and D.E. Soltis. 1987. Allozyme differentiation between Tolmiea menziesii and Tellima grandiflora (Saxifragaceae). Syst. Bot 12: 154–161.Google Scholar
  105. Sadler, R., and M. Shaw. 1978. A caution against the use of polyvinylpyrrolidone in the extraction of plant glutamine synthetase. Canad. J. Bot 56: 1382–1385.Google Scholar
  106. Sari-Gorla. M., C. Frova, G. Binelli, and E. Ottaviano. 1986. The extent of gametophytic-sporophytic gene expression in maize. Theor. Appl. Genet 72: 42–47.Google Scholar
  107. Schaffer, H. E., and F. M. Johnson. 1973. Constant (optimum) power electrophoresis. Anal. Biochem 51: 577–583.PubMedGoogle Scholar
  108. Scheid, II. W., A. Ehmke, and T. Hartmann. 19130. Plant NAD-dependent glutamate dehydrogenase: purification, molecular properties and metal ion activation of the enzymes from Lemna minor and Pisum sativum. Z. Naturforsch 35C: 213–221.Google Scholar
  109. Schnarrenburger, C., M. Tetour, and M. Herbert. 1975. Development and intracellular distribution of enzymes of the oxidative pentose phosphate cycle in radish cotyledons. Pl. Physiol 56: 836 - 840.Google Scholar
  110. Schwennesen. J.. B. A. Mielke. and W. H. Wolfe. 1982. Identification of seedless table grape cultivars and a bud sport with berry isozymes. Hort. Sci. 17: 366–368.Google Scholar
  111. Shannon. L. M. 1968. Plant isoenzymes. Ann. Rev. Pl. Physiol 19: 187–210.Google Scholar
  112. Shumaker, K. M., R. W. Allard, and A. L. Kahler. 1982. Cryptic variability at enzyme loci in three plant species. Avena barbata, Hordeum vulgare, and Zea mays. J. Heredity, 73: 88–90.Google Scholar
  113. Shaw. C. R. 1970. How many genes evolve? Biochem. Genet 4: 275–283.PubMedGoogle Scholar
  114. Shaw. C. R. and R. Prasad. 1970. Starch gel electrophoresis of enzymes—a compilation of recipes. Biochem. Genet 4: 297–320.PubMedGoogle Scholar
  115. Siciliano, M. J., and C. R. Shaw. 1976. Separation and visualization of enzymes on gels. In I. Smith (ed.), Chromatographic and electrophoretic techniques, Vol. II. 185–209. Heinemann Medical Books, London.Google Scholar
  116. Simcox, P. D.. and D. T. Dennis. 1978. Isoenzymes of the glycolytic and pentose phosphate pathways in proplastids from the developing endosperm of Ricinus communis. PI. Physiol 61: 871–877.Google Scholar
  117. Smith, I. 1976. Starch gel electrophoresis. In I. Smith [ed.], Chromatographic and eleclrophoretic techniques, Vol. II. 153–184. Heinemann Medical Books, London.Google Scholar
  118. Smithies. O. 1955. Zone electrophoresis in starch gels: group variation in the serum proteins of normal human adults. Biochem. J 61: 629–641.PubMedGoogle Scholar
  119. Soltis, D. E. 1986. Genetic evidence for diploidy in Equisetum. Amer. J. Bot 73: 908–913.Google Scholar
  120. Soltis, D. E., C. H. Haufler. D. C. Darrow. and G. J. Gastony, 1983. Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedules. Amer. Fern J 73: 9–27.Google Scholar
  121. Soltis, D. E., C. H. Haufler, and G. J. Gastony. 1900. Detecting enzyme variation in the fern genus Bommeria: an analysis of methodology. Syst. Bot 5: 30–38.Google Scholar
  122. Soltis, D. E., and P. S. Soltis. 1986. Active enzymes from megaspores of Marsilea and Regnellidium. Amer. Fern J 76: 17–20.Google Scholar
  123. Stavrakakis. M., and M. Loukas. 1983. The between- and within-grape cultivars genetic variation. Scientia Hort 19: 321–334.Google Scholar
  124. Strauss, S. H., and M. T. Conkle. 1986. Segregation, linkage, and diversity of allozymes in knobcone pine. Theor. Appl. Genet 72: 483–493.Google Scholar
  125. Stuber, C. W., and M. M. Goodman. 1963. Genetic control, intracellular localization, and genetic variation of phosphoglucomutase isozymes in maize (Zea mays L.). Biochem. Genet 21: 667–689.Google Scholar
  126. Stuber, C. W., and M. M. Goodman., 1964. Inheritance, Intracellular localization, and genetic variation of 6-phosphogluconate dehydrogenase isozymes in maize. Maydica 29: 453–471.Google Scholar
  127. Stuber, C. W., M. M. Goodman., and F. M. Johnson. 1977. Genetic control and racial variation of β-glucosidase isozymes in maize (Zea mays L.). Biochem. Genet 15: 383–394.PubMedGoogle Scholar
  128. Suiter, K. A., J. F. Wendel, and J. S. Case. 1983. Linkage 1: a pascal computer program for the detection and analysis of genetic linkage. J. Heredity 74: 203–204.Google Scholar
  129. Tanksley, S. D. 1960. PGM, a single gene in tomato responsible for a variable number of isozymes. Canad. J. Genet. Cytol 22: 271–278.Google Scholar
  130. Tanksley, S. D. 1984. Linkage relationships and chromosomal locations of enzyme-coding genes in pepper, Capsicum annuum. Chromosoma 89: 352–360.Google Scholar
  131. Tanksley, S. D., and G. D. Kuehn. 1985. Genetics, subcellular localization, and molecular characterization of 6-phosphogluconate dehydrogenase isozymes in tomato. Biochem Genet. 23: 441–454.PubMedGoogle Scholar
  132. Tanksley, S. D., and T. J. Orton [eds.]. 1983. Isozymes in plant genetics and breeding. Elsevier, Amsterdam.Google Scholar
  133. Tanksley, S. D., and C.M. Rick. 1980. Genetics of esterases in species of Lycopersicon. Theor. Appl. Genet 56: 209–219.Google Scholar
  134. Tanksley, S. D., D. Zamir. and C. M. Rick. 1981. Evidence for extensive overlap of sporophytic and gametophytic gene expression in Lycopersicon esculentum. Science 213: 453–455.PubMedGoogle Scholar
  135. Tanner, G. J., L. Copeland. and J. F. Turner. 1983. Subcellular localization of hexose kinases in pea stems: mitochondrial hexokinase. Pl. Physiol 72: 659–663.Google Scholar
  136. Thorup, O. A., W. B. Strole. and B. S. Leavell. 1961. A method for the localization of catalase on starch gels. J. Lab. Clin. Med 58: 122–128.PubMedGoogle Scholar
  137. Torres. A. M., U. Diedenhofen. B. O. Beigh. and R. J. Knight. 1978. Enzyme polymorphisms as genetic markers in the avocado. Amer. J. Bot 65: 134–139.Google Scholar
  138. Turner, V.S., and D. A. Hopkinson. 1979. The use of meldolablue in isozyme stains after electrophoresis. F.E.B.S. Lett 105: 376–378.Google Scholar
  139. Tyson. H., M. A. Fieldes. C. Cheung, and J. Starubin. 1985. Isozyme relative mobility (Rm) changes related to leaf position: apparently smooth Rm trends and some implications. Biochem. Genet 23: 641–654.PubMedGoogle Scholar
  140. Vallejos. E. 1983. Enzyme activity staining. In S. D. Tanksley and T. J. Orton [eds.], Isozymes in plant genetics and breeding. Part A. 469–516. Elsevier, Amsterdam.Google Scholar
  141. Van Den Berg, B. M., and H. J. W. Wijsman. 1982. Genetics of the peroxidase isoenzymes in Petunia. Part 3: location and developmental expression of the structural gene prxA. Theor. Appl. Genet 63: 33 - 38.Google Scholar
  142. Vodkin. L. O., and J. G. Scandalios. 1981. Genetic control, developmental expression and biochemical properties of plant peptidases. In M.L. Rattazzi. J. G. Scandalios. G. S. Whitt [eds.]. Isozymes: current topics in biological and medical research. Vol 5, 1–25. Alan R. Liss. New York.Google Scholar
  143. Wallner, S. J., and J. E. Walker. 1975. Glycosidases in cell wall-degrading extracts of ripening tomato fruits. PI. Physiol 59: 94–98.Google Scholar
  144. Warwick, S. I., and L.D. Gottlieb. 1985. Genetic divergence and geographic speciation in Layia (Compositae). Evolution 39: 1236–1241.Google Scholar
  145. Watson. M. A., and G. L. Cook. 1982. Comparison of electrophoretic phenotypes obtained from water hyacinth material prepared in different grinding buffers. Aquat. Bot 14: 205–210.Google Scholar
  146. Weeden, N. F. 1983. Plastid isozymes, In S. D. Tanksley and T. J. Orton [eds.], Isozymes in plant genetics and breeding. Part A. 139–156. Elsevier. Amsterdam.Google Scholar
  147. Weeden, N. F. 1984. Distinguishing among white seeded bean cultivars by means of allozyme genotypes. Euphytica 33: 199–208.Google Scholar
  148. Weeden, N. F., 1985. Identification and partial characterization of 3 beta-galactosidase isozymes in pea leaves. Pisum Newsl. 17: 76–78.Google Scholar
  149. Weeden, N. F., and L. D. Gottlieb. 1979. Distinguishing allozymes and isozymes of phosphoglucoseisomerases by electrophoretic comparisons of pollen and somatic tissues. Biochem. Genet 17: 287–296.PubMedGoogle Scholar
  150. Weeden, N. F., and L. D. Gottlieb., and Isolation of cytoplasmic enzymes from pollen. PI. Physiol. 66: 400–403.Google Scholar
  151. Weeden, N. F., and G. A. Marx. 1984. Chromosomal locations of twelve isozyme loci in Pisum sativum. J. Heredity 75: 365–370.Google Scholar
  152. Weeden, N. F., and G. A. Marx., 1987. Further genetic analysis and linkage relationships of isozyme loci in the pea: confirmation of the diploid nature of the genome. J. Heredity 78: 153–159.Google Scholar
  153. Weeden, N. F., and R. W. Robinson. 1986. Allozyme segregation ratios in the interspecific cross Cucurbita maxima x C. ecuadorensis suggest that hybrid breakdown is not caused by minor alterations in chromosome structure. Genetics 114: 593–609.PubMedGoogle Scholar
  154. Wendel. J. F., and C. R. Parks. 1982. Genetic control of isozyme variation in Camellia japonica L. J. Heredity 73: 197–204.Google Scholar
  155. Wendel. J. F., M. M. Goodman. C. W. Stuber. and J. B. Beckett. 1988. New isozyme systems for maize (Zea mays L.): aconitate hydratase, adenylate kinase. NADH dehydrogenase and shikimate dehydrogenase. Biochem. Genet 26: 421–445.PubMedGoogle Scholar
  156. Wendel. J. F., C. W. Stuber. M. D. Edwards, and M. M. Goodman. 1986 Duplicated chromosome segments in maize (Zea mays L.): further evidence from hexokinase isozymes. Theor. Appl. Genet, 72: 178–185.Google Scholar
  157. Werman, S. D. 1986. Enhancing resolution in horizontal starch gels with cellulose acetate membranes. Isozyme Bull. 19: 52.Google Scholar
  158. Werth, C. R. 1985. Implementing an isozyme laboratory at a field station. Va. J. Sci 36: 53–76.Google Scholar
  159. Wheeler, N. C., and R. P. Curies. 1982. Population structure, genie diversity, and morphological variation in Pinus contorta Dougl. Canad. J. For. Res 12: 595–606.Google Scholar
  160. Wheeler, N. C., R. P. Curies, and D. M. O’Malley. 1983. Biosystematics of the genus Pinus, subsection Contortae. Biochem. Syst. Ecol 11: 333–340.Google Scholar
  161. Wilson, R, E., and J. F. Hancock. 1978. Comparison of four techniques used in the extraction of plant enzymes for electrophoresis. Bull. Torrey Bot. Club 105: 318–320.Google Scholar
  162. Wolf. P.G., C. H. Haufler, and E. Sheffield. 1987. Electrophoretic evidence for genetic diploidy in the bracken fern (Pteridium aquillnum). Science 236: 947–949.PubMedGoogle Scholar
  163. Womack, J. E., and Y. D. Moll. 1986. Gene map of the cow: conservation of linkage with mouse and man. J. Heredity 77: 2–7.Google Scholar
  164. Yazdani, R., and D. Rudin. 1902. Inheritance of fluorescent esterase and β-galactosidase in haploid and diploid tissues of Pinus sylvestris L. Hereditas 96: 191–194.Google Scholar
  165. Yeh. F. C.. and C. Layton. 1979. The organization of genetic variability in central and marginal populations of lodgepole pine, Pinus contorta ssp. latifolla. Canad. J. Genet. Cytol 21: 487–503.Google Scholar
  166. Zehender, H., D. Trescher, and J. Ullrich. 1983. Activity slain for pyruvate decarboxylase in polyacrylamide gels. Anal. Biochem 135: 16–21.PubMedGoogle Scholar
  167. Zimniak-Przybylska. Z., S. Blixt. and J. Przybylska. 1985. Isoenzyme variation in the genus Pisum. IV. Further electrophoretic analysis of amylases from cotyledons of ungerminated seeds. Genetica Polonica 26: 303–308.Google Scholar

Copyright information

© Dioscorides Press 1989

Authors and Affiliations

  • Jonathan F. Wendel
    • 1
  • Norman F. Weeden
    • 2
  1. 1.Department of Botany Bessey HallIowa State UniversityAmesUSA
  2. 2.Department of Horticultural Sciences New York State Agricultural Experiment StationCornell UniversityGenevaUSA

Personalised recommendations