Clays as Natural Catalyst in Prebiotic Processes

  • A. Negron-Mendoza
  • G. Albarran
  • S. Ramos-Bernal


The role of clay minerals in prebiotic chemistry is discussed in some of the more relevant questions about its importance. So far, data published about laboratory experiments show that clays can act as adsorbers, concentrator and catalyst for polymerization. However, there are still inconclusiveness due to: the amount of adsorbed material, type of clay used, he pH of the bulk solution, etc. All these factors affect the extent in which these capacities occurred at conditions that can be relevant to geological scenarios. Finally, some light in the role of clays can be brought by further experiments dealing with energy transfer process.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akabori, S., Okawa, K, and Sato, M. (1956) Introduction of side chains into polyglycine dispersed on solid surface. I, Bull. Chem. Soc. Japan, 29, 608–611.CrossRefGoogle Scholar
  2. Akabori, S. (1955) Asymmetric synthesis of amino acids and formation of fore proteins, Kagaku, 25, 54–59.Google Scholar
  3. Albert, J.T. and Harter, R.D. (1973) Adsorption of lysozyme and ovalbumin by clay. Effect of clay suspension pH and clay mineral type, Soil Sci. 115, 130–136.CrossRefGoogle Scholar
  4. Bernai, J.D. (1951) The Physical Basis of Life, Routledge and Kegan Paul, London.Google Scholar
  5. Degenes, E.T., Matheja, J., and Jackson, T.A. (1970) Template catalysis: Asymmetric polymerization of amino acids on clay minerals, Nature, 227, 492–493.CrossRefGoogle Scholar
  6. Ferris, J.P., Ertem, G., and Agarwal, V.K. (1989) The adsorption of nucleotides and polynucleotides on montmorillonite clay, Origins Life Evol. Biosphere, 19, 153–164.CrossRefGoogle Scholar
  7. Ferris, J.P. (1991), Prebiotic synthesis on minerals: RNA oligomer formation. In J.M. Greenberg, C.X. Mendoza-Gomez, and V. Pirronello (eds.) The Chemistry of Life’s Origins, Kluwer Academic Publishers, Dordrecht.Google Scholar
  8. Ferris, J.P. and Ertem, G. (1992a) Oligomerization reactions of ribonucleotides on montmorillonite: Reaction of the 5′ Phosphorimidazolide of adenosine, Science, 257, 1387–1389.PubMedCrossRefGoogle Scholar
  9. Ferris, J.P. and Ertem, G. (1992b) Oligomerization reactions of ribonucleotides: The reaction of the 5′phosphorimidazolides of nucleosides on montmorillonite and other minerals, Origins of Life Evol. Biosphere, 22, 369–381.CrossRefGoogle Scholar
  10. Friebele, E., Shimoyama, A., and Ponnamperuma, C. (1981) Possible selective adsorption of enantiomers by sodium montmorillonite, Origin life, Proc. ISSOL Meet. 3rd, (eds.) Wolman, Y., Reidel: Dordrecht. Neth. 337–346.Google Scholar
  11. Fripiat, J.J., Poncelet, G., van Assche, A.T., and Mayandon, J. (1972) Zeolite as catalysts for the synthesis of amino acids and purines, Clays Clay Miner. 20, 331–339.CrossRefGoogle Scholar
  12. Gibbs, D., Lohrmann, R. and Orgel, L.E. (1980) Template-directed synthesis and selective adsorption of oligonucleotides on hydroxyapatite. J. Mol. Evol. 15, 347–354.PubMedCrossRefGoogle Scholar
  13. Graf, G. and Lagaly, G. (1980) Interaction of clay minerals with adenosine-5-phosphates, Clay and Clays Minerals, 28, 12–18.CrossRefGoogle Scholar
  14. Greenland, D.J. (1956) The adsorption of sugars by montmorillonite. I. X-ray studies, J. Sil Sci. 7, 319–328.CrossRefGoogle Scholar
  15. Greenland, D.J., Laby, R.H., and Quirk, J.P. (1962) Adsorption of glycine and its di-, tri- and tetrapeptides by montmorillonite, Trans. Faraday Soc. 58, 829–841.CrossRefGoogle Scholar
  16. Hatanaka, H., Egami, F. (1977) The formation of amino acids and related oligomers from formaldehyde and hydroxylamine in modified sea mediums related to prebiotic conditions, Bull. Chem. Soc. Japon 50, 1147–1156.CrossRefGoogle Scholar
  17. Hsu, Shuei-Chi, (1977) Ph.D. Dissertation, Polythechnical Institute of New York, Brooklyn, N. Y.Google Scholar
  18. Ibañez, J.D., Kimball, A.P., and Oró, J. (1971) Possible prebiotic condensation of mononucleotides by cyanamide, Science, 173, 444–446.PubMedCrossRefGoogle Scholar
  19. Inoue, T., Orgel. L.E. (1982) Oligomerization of (guanosine 5′-phosphor)-2 methylimidazolide on Poly(C). An RNA polymerase model, J. Mol Evol. 162, 201–217.Google Scholar
  20. Inoue, T., Orgel. L.E. (1982) A non enzymatic RNA polymerase model. Science, 219, 859–862.CrossRefGoogle Scholar
  21. Jepson, W.B., Williams, J.F. (1972) Adsorption of water by clays, Clay Miner. 9, 275–279.CrossRefGoogle Scholar
  22. Lahav, N. and Chang, S. (1976) The possible role of solid surface area in condensation reactions during chemical evolution: re-evaluation. J. Mol. Evol. 8, 357–380.PubMedCrossRefGoogle Scholar
  23. Lahav, N., White, D., and Chang, S. (1978) Peptide formation in the prebiotic era. Thermal condensation of glycine in fluctuating clay environments. Science, 201, 67–69.PubMedCrossRefGoogle Scholar
  24. Lahav, N., and Chang, S. (1982) The possible role of soluble salts in chemical evolution, J. Mol. Evol. 19, 36–46.PubMedCrossRefGoogle Scholar
  25. Lailach, G.E., Thompson, T.D., and Brindley, G.W. (1968a) Absorption of pyrimidines, purines, and nucleosides by Li-, Na-, Mg-, and Ca-montmorillonite (clay-organic studies XII), Clays and Clay Mineral, 16, 285–293.CrossRefGoogle Scholar
  26. Lailach, G.E., Thompson, T.D., and Brindley, G.W. (1968b) Absorption of pyrimidines, purines, and nucleosides by Co-, Ni-, Cu-, and Fe(HI)-montmorillonite (clay-organic studies XIII), Clays and Clay Mineral, 16, 295–301.CrossRefGoogle Scholar
  27. Laszlo, P. (1987) Chemical reactions on clays, Science, 235, 1473–1477.PubMedCrossRefGoogle Scholar
  28. Mitra, S.P., Misra, S.G., Panda, N. (1957) Adsorption of glucose by calcium bentonite, Proc. Natl.Acad. Si. India, 26A, Pt 1, 72–74.Google Scholar
  29. Moonrbath, S. (1995) Private communication.Google Scholar
  30. Mortland, M.M. (1970) Clay-organic complexes and interactions, Adv. Agron. 22, 75–117.CrossRefGoogle Scholar
  31. Mosqueira, F.G., Albarrán, G., and Negrón-Mendoza, A. (1996) A review of conditions effecting the radiolysis due to 40K of nucleic acid bases and their derivatives adsorbed on clay minerals, Origins Life Evol. Biosphere, in press.Google Scholar
  32. Negrón-Mendoza, A. Ramos, S.. Albarrán, G.(1995) Enhance decarboxylation reaction of carboxylic acids in clay minerals., Radiat. Phys. Chem. 46, 565–568.CrossRefGoogle Scholar
  33. Nicol, S.K., Hunter, R.J. (1970) Rheological and electrokinetic properties of kaolinite suspensions, Aust. J. Chem. 23, 2177–2186.CrossRefGoogle Scholar
  34. Odin, G.S. (1988) The origin of clays on Earth, in Cairns-Smith and H. Hartman (eds.), Clay Minerals and the Origin of Life, Cambridge University Press, Cambridge.Google Scholar
  35. Odom, D., Lahav, N., and Chang, S. (1979) Association of nucleotides with homoionic clays, J. Mol. Evol. 12, 365–367.CrossRefGoogle Scholar
  36. Paecht-Horowitz, M., Berger, J., and Katchalsky, A. (1970) Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino acid adenylates, Nature, 228, 636–639.PubMedCrossRefGoogle Scholar
  37. Perezgaga, L. Negrón-Mendoza, A., Mosqueira, G. and De Pablo, L. (1996) Site of adsorption of purines, pyrimidines and its corresponding derivatives on sodium montmorillonite. To be published.Google Scholar
  38. Pinnavaia, T.J., Raythatha, R., Lee, J.G., Halloran, L.J., and Hoffman, J.F. (1979) Intercalation of catalytically active metal complexes in mica-type silicates:rhodium hydrogenation catalysis. J. Am. Chem. Soc. 101, 6891–7.CrossRefGoogle Scholar
  39. Ponnamperuma, C., Shimoyama, A., and Friebele, E. (1982) Clay and the origin of life, Origins of Life, 9–40.Google Scholar
  40. Poncelet, G., van Assche, A.T., and Fripiat, J. J. (1975) Synthesis of biological molecules on molecular sieves, Origins of Life, 6, 401–406.Google Scholar
  41. Ramos, S. and Negrón-Mendoza, A. (1992) Radiation Heterogeneous processes of 14C-acetic acid adsorbed in Na-Montmorillonite. J. Radianal. Nucl. Chem. 160, 487–492CrossRefGoogle Scholar
  42. Rao, M., Odom, D.G. and Oró, J. (1980) Clays in prebiological chemistry, J. Mol. Evol. 15, 317–331.PubMedCrossRefGoogle Scholar
  43. Schott, H. (1968) Deflocculation of swelling clay by nonoionicand anionic detergents, J. Colloid. Interface Sci. 26, 133–139.CrossRefGoogle Scholar
  44. Schwartz, A. and Orgel, L.E. (1985) Template-directed polynucleotide synthesis on mineral surface, J. Mol. Evol., 21, 299–300.CrossRefGoogle Scholar
  45. Shimoyama, A. and Ponnamperuma, C.(1980) in P.E. Hare, T.C. Hoering and K. King, Jr. (eds.) Biogeochemistry of Amino Acids, Pap. Conf. 1978, Wiley, New York, N.Y. 145–151.Google Scholar
  46. Solomon, D.H. (1968) Clay minerals as electron acceptors and or electron donors in organic reactions. Clays Clay Miner. 16, 31–39.CrossRefGoogle Scholar
  47. Sposito, G. (1984) The Surface Chemistry of Soils, Clarendon Press, OxfordGoogle Scholar
  48. Swartzen-Allen, S.L., and Matijevic, E. (1974) Surface and colloid chemistry, Chem. Rev. 74, 385–400.CrossRefGoogle Scholar
  49. Theng, B.K.G. (1974) The Chemistry of clay-organic reactions, John Wiley & Sons, New York.Google Scholar
  50. Weiss, A. (1969) in G. Eglinton and M. T.J. Murphy, (eds.) Organic Geochemistry, Springer-Verlag, New York, pp. 737–781.Google Scholar
  51. Weiss, A. (1981) Replication and evolution in inorganic systems, Angew.Chem.Int.Ed.Engl., 20, 850–860.CrossRefGoogle Scholar
  52. Yoshino, D., Hayatsu, R., and Anders, E. (1971) Origin of organic matter in early solar system — III. Amino acids: Catalytic synthesis, Geochim. Cosmochim. Acta, 35, 927–938.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • A. Negron-Mendoza
    • 1
  • G. Albarran
    • 1
  • S. Ramos-Bernal
    • 1
  1. 1.Instituto de Ciencias NuclearesUNAMMéxico, D.F.Mexico

Personalised recommendations