Formation of Thermally Reversible Networks from Starch Polysaccharides

  • W. Vorwerg
  • F. R. Schierbaum
  • F. Reuther
  • B. Kettlitz

Abstract

The main components of homopolymer mixtures in starches are different in chemical structures. The capacity to aggregate is determined by distribution of molecular weight of amylose andamylopectin and certainly by the length of exterior chains of the branched amylopectin molecules. Methods applied for measurement of the physical properties are time dependence of the dynamic viscosity, shear modulus and relaxation. The thermal behaviour has been investigated by the method of Ferry and Eldridge. In the presence of amylopectin the aggregation process of amylose is prevented and thermally reversible networks are formed. Small amounts of added soluble amylose increase the intensity of polymer interaction. Amylose molecules with a degree of polymerization < 500 are favourable for a high aggregation velocity. Amylopectin contributes to the rigidity as well as to the viscoelastic properties of the gel, largely depending on its molecular magnitude. The results lead us to assume that cooperative interactions between amylose and amylopectin diminish the extent of junction zones in comparison to amylose aggregates.

Keywords

Shear Modulus Potato Starch Melting Enthalpy Elsevier Apply Science Publisher Shear Modulus Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richter, M., Schierbaum, F., Augustat, S. and Knoch, K.-D., US Patent 3 962 465, 1976.Google Scholar
  2. 2.
    Pfannemüller, B., Mayerhöfer, H. and Schulz, R. C, Conformation of amylose in aqueous solution: Optical rotatory dispersion and circular dichroism of amylose-iodine complexes and dependence on chain length of retrogradation of amylose, Biopolymers, 1971, 10, 243–61.CrossRefGoogle Scholar
  3. 3.
    Ring, S. G., Miles, M. J., Morris, V. J. and Orford, P. D., Recent observations on starch rétrogradation, in New Approaches to Research on Cereal Carbohydrates, Hill, R. D. and Munck, L. (Eds), Elsevier, Amsterdam, 1985, p. 109.Google Scholar
  4. 4.
    Eldridge, J. E. and Ferry, J. D., Studies of the crosslinking process in gelatin gels. III. Dependence of melting point on concentration and molecular weight, J. Phys. Chem., 1954, 58, 992–5.CrossRefGoogle Scholar
  5. 5.
    Braudo, E. E., Belavtseva, E. M., Titova, E. F., Plashchina, J. G., Krylov, V. L., Tolstoguzov, V. B., Schierbaum, F. and Berth, G., Struktur und Eigenschaften von Maltodextrin-Hydrogelen, Stärke, 1979, 31, 188–94.CrossRefGoogle Scholar
  6. 6.
    Wulf, K. and Philipp, B., Zum Auftreten mechanischer Kippschwingungen bei Scherbeanspruchung von Zellulosedispersionen, Z. phys. Chemie, Leipzig, 1975, 256, 478–86.Google Scholar
  7. 7.
    Willstätter, R. and Schudel, G., Ber. Dtsch. Chem. Ges., 1918, 51, 780.CrossRefGoogle Scholar
  8. 8.
    Kettlitz, Bernd, Herstellung und funktionelle Eigenschaften acetylierter Maltodextrine, PhD Thesis, GDR, 1984.Google Scholar

Copyright information

© Elsevier Applied Science Publishers Ltd 1988

Authors and Affiliations

  • W. Vorwerg
    • 1
  • F. R. Schierbaum
    • 1
  • F. Reuther
    • 1
  • B. Kettlitz
    • 1
  1. 1.Central Institute of Nutrition of the Academy of Sciences of the GDRBergholz-RehbrückeGermany

Personalised recommendations