The physical properties and function of nails

  • A. Y. Finlay

Abstract

Nails are not only an evolutionary hangover from our ancestors’ jungle-life. We continue to make use of our nails as weapons, as tools, for body care and as social ornaments. The functions of nails, however, depend on their physical properties which in turn are directly dependent on their gross anatomical structure, their cellular structure and hence on their biochemical components.

Keywords

Stratum Corneum Nail Plate Trace Metal Content Human Nail Diseased Nail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lindskov, R. (1982). Soft nails after treatment with aromatic retinoids. Arch. Dermatol., 118, 535–6PubMedCrossRefGoogle Scholar
  2. 2.
    Dawber, R.P.R. and Finlay, A.Y. (1985). Physical properties of hair and nails: workshop report. Bioeng. Skin, 1, 57Google Scholar
  3. 3.
    Mahler, F., Muheim, M.H., Intaglietta, M., Bollinger, A. and Anliker, M. (1979). Blood pressure fluctuations in human nailfold capillaries. Am. Phys. Soc., 236(6) H888–93Google Scholar
  4. 4.
    Dawber, R.P.R. and Baran, R. (1984). Investigations and some physicochemical properties of nails. In Baran, R. and Dawber, R.P.R. (eds.) Disease of the Nails and their Management. Chap. 3, pp 98–102. (Oxford: Blackwell Scientific Publications)Google Scholar
  5. 5.
    Forslind, B. and Thyresson, N. (1975). On the structure of the normal nail. A scanning electron microscope study. Arch. Derm. Forsch., 251, 199–204Google Scholar
  6. 6.
    Meyer, J.Ch. and Grundmann, H.P. (1984). Scanning electron microscopic investigation of the healthy nail and its surrounding tissue. J. Cut. Path., 11, 74–9CrossRefGoogle Scholar
  7. 7.
    Germann, H., Barran, W. and Plewig, G. (1980). Morphology of corneocytes from human nail plates. J. Invest. Dermatol., 74, 115–118PubMedCrossRefGoogle Scholar
  8. 8.
    Alexiou, D., Koutselinis, A., Manolidis, C., Boukis, D., Papadatos, J. and Papadatos, C. (1980). The content of trace elements (Cu, Zn, Fe, Mg) in fingernails of children. Dermatologica, 160, 380–2PubMedCrossRefGoogle Scholar
  9. 9.
    Bauer, F. (1983). Investigations of trace metal content of normal and diseased nails. Aust. J. Dermatol., 24, 127–9CrossRefGoogle Scholar
  10. 10.
    Garg, R.K. (1983). Determination of ABO (H) bloodgroup substances from finger/toe nails. Am. J. Forens. Med. Path., 4, 143–4CrossRefGoogle Scholar
  11. 11.
    Chapman, A.L. et al. (1985). X-ray microanalysis of chloride in nails from cystic fibrosis and control patients. Eur. J. Resp. Dis., 66, 218–23Google Scholar
  12. 12.
    Bakan, E. et al. (1985). Glycosylation of nail in diabetics; possible marker of long-term hypercalcaemia. Clin. Chim. Acta, 147, 1–5PubMedCrossRefGoogle Scholar
  13. 13.
    Pounds, C.A. (1979). Arsenic in fingernails. J. Forens. Sci. Soc., 3, 165–73CrossRefGoogle Scholar
  14. 14.
    Caputo, R., Gasparini, G. and Contini, D. (1982). A freeze-fracture study of the human nail plate. Arch. Dermatol. Res., 272, 117–25PubMedCrossRefGoogle Scholar
  15. 15.
    Marshall, R.C. (1980). Genetic variation in the proteins of human nail. J. Invest. Dermatol., 75, 264–9PubMedCrossRefGoogle Scholar
  16. 16.
    Marshall, R.C. (1983). Characterization of the proteins of human hair and nail by electrophoresis. J. Invest. Dermatol., 80, 519–24PubMedCrossRefGoogle Scholar
  17. 17.
    Shono, S. and Toda, K. (1983). The structure proteins of the human nail. In Seiji, M. and Bernstein, I.A. (eds.) Normal and Abnormal Epidermal Differentiation, Current Problems in Dermatology, pp 317–26. (Basel: Karger)Google Scholar
  18. 18.
    Forslind, B., Lindstrom, B. and Philipson, B. (1971). Quantitative microradiography of normal human nail. Acta Dermatovener. (Stockh.). 51, 89–92Google Scholar
  19. 19.
    Baden, H.P. (1970). The physical properties of nail. J. Invest. Dermatol., 55, 116–22CrossRefGoogle Scholar
  20. 20.
    Baden, H.P., Goldsmith, L.A. and Fleming, B. (1973). A comparative study of the physicochemical properties of human keratinized tissues. Biochem. Biophys. Acta, 322, 269–78PubMedGoogle Scholar
  21. 21.
    Finlay, A.Y., Frost, P., Keith, A.D. and Snipes, W. (1980). An assessment of factors influencing flexibility of human fingernails. Br. J. Dermatol., 103, 357–65PubMedCrossRefGoogle Scholar
  22. 22.
    Michaelson, J.B. and Huntsman, D.J. (1963). New aspects of the effects of gelatin on fingernails. J. Soc. Cosmet. Chem., 14, 443Google Scholar
  23. 23.
    Robson, J.R.K. (1974). Hardness of finger nails in well-nourished and malnourished populations. Br. J. Nutr., 32, 389–94PubMedCrossRefGoogle Scholar
  24. 24.
    Newman, S.B. and Young, R.W. (1967). Indentation hardness of the fingernail. J. Invest. Dermatol., 49, 103–5PubMedGoogle Scholar
  25. 25.
    Ramrakhiani, M. (1978). Indentation and hardness studies of human nails. Ind. J. Biochem. Biophys., 15, 341–3Google Scholar
  26. 26.
    Young, R.W., Newman, S.B. and Capott, R.J. (1965). Strength of fingernails. J. Invest. Dermatol., 44, 358–60PubMedGoogle Scholar
  27. 27.
    Forslind, B. (1970). Biophysical studies of the normal nail. Acta Dermatovener. (Stockh.), 50, 161–8Google Scholar
  28. 28.
    Forslind, B., Nordstrom, G., Toijer, D. and Eriksson, K. (1980). The rigidity of human fingernails: a biophysical investigation on influencing physical parameters. Acta Dermatovener. (Stockh.), 60, 217–22Google Scholar
  29. 29.
    Maloney, M.J., Paquette, E.G. and Shansky, A. (1977). The physical properties of fingernails. 1. Apparatus for physical measurements. J. Soc. Cosmet. Chem., 28, 415–25Google Scholar
  30. 30.
    Burch, G.E. and Winsor, T. (1946). Diffusion of water through dead plantar, palmar and torsal human skin and through toe nails. Arch. Derm. Syph., 53, 39–41Google Scholar
  31. 31.
    Spruit, D. (1971). Measurement of water vapor loss through human nail in vivo. J. Invest. Dermatol., 56, 359–61PubMedCrossRefGoogle Scholar
  32. 32.
    Walters, K.A., Flynn, G.L. and Marvel, J.R. (1981). Physicochemical characterization of the human nail. I. Pressure sealed apparatus for measuring nail plate permeabilities. J. Invest. Dermatol., 76, 76–9PubMedCrossRefGoogle Scholar
  33. 33.
    Walters, K.A., Flynn, G.L. and Marvel, J.R. (1983). Physicochemical characterization of the human nail: permeation pattern for water and the homologous alcohols and differences with respect to the stratum corneum. J. Pharm. Pharmacol., 35, 28–33PubMedCrossRefGoogle Scholar
  34. 34.
    Walters, K.A., Flynn, G.L. and Marvel, J.R. (1985). Penetration of the human nail plate: the effects of vehicle pH on the permeation of miconazole. J. Pharm. Pharmacol., 37, 498–9PubMedCrossRefGoogle Scholar
  35. 35.
    Stuttgen, G. and Bauer, E. (1982). Bioavailability, skin and nail penetration of topically applied antimycotics. Mykosen, 25, 74–80PubMedGoogle Scholar
  36. 36.
    Gammeltoft, M. and Wulf, H.C. (1980). Transmission of 12 kV Grenz rays and 29 kV X-rays through normal and diseased nails. Acta Dermatovener. (Stockh.), 60, 431–2Google Scholar
  37. 37.
    Parker, S.G. and Diffey, B.L. (1983). The transmission of optical radiation through human nails. Br. J. Dermatol., 108, 11–16PubMedCrossRefGoogle Scholar
  38. 38.
    Grey, L.J. and Bowlt, C. (1978). An attempt to use thermally stimulated currents in human nail to estimate dose in cases of accidental exposure to ionising radiation. Phys. Med. Biol., 23, 759–60PubMedCrossRefGoogle Scholar

Copyright information

© MTP Press Limited 1988

Authors and Affiliations

  • A. Y. Finlay

There are no affiliations available

Personalised recommendations