The electrophysiology of reperfusion- induced arrhythmias following acute myocardial ischaemia

  • N. A. Flores
  • D. J. Sheridan
Part of the Current Status of Clinical Cardiology book series (CSOCC, volume 6)

Abstract

The observation that reperfusion of the ischaemic myocardium frequently leads to the development of ventricular arrhythmias has become well established from results obtained during experimental studies, and from clinical observations during reperfusion1-3. Much useful information has been obtained during the past decade; however, the precise mechanisms which induce these arrhythmias remain incompletely understood. Experimental studies have revealed for example that ventricular fibrillation may occur more frequently on reperfusion than during the preceding period of ischaemia4,5, however the arrhythmogenic effects of reperfusion, although intense, are short lived and this has made it difficult to provide direct evidence of their involvement in sudden cardiac death. As a result almost all of our understanding of the electrophysiological changes which are associated with the development of ventricular arrhythmias during reperfusion is based on the use of animal models. This chapter will attempt to consolidate these findings, and provide an insight into the mechanisms responsible for the arrhythmogenic effects of reperfusion.

Keywords

Myocardial Ischaemia Ventricular Fibrillation Refractory Period Action Potential Duration Acute Myocardial Ischaemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rentrop, P., Blanke, H., Karsch, K. R., Kaiser, H., Kostering, H. and Leitz, K. (1981). Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation, 63, 307 – 14PubMedCrossRefGoogle Scholar
  2. 2.
    Araki, H., Koirvaya, Y., Nakagalir, O. and Nakamura, H. (1983). Diurnal distribution of ST segment elevation and related arrhythmias in patients with variant angina: a study of ambulatory ECG monitoring. Circulation, 67, 995 – 1000PubMedCrossRefGoogle Scholar
  3. 3.
    Previtali, M., Klersky, C., Salerno, J. A., Chimienti, M., Panciroli, C., Marangoni, E., Specchia, G., Comolli, M. and Bobba, P. (1983). Ventricular tachyarrhythmias in Prinzmetal’s variant angina: clinical significance and relation to the degree and time course of ST segment elevation. Am. J. Cardiol., 52, 19 – 25PubMedCrossRefGoogle Scholar
  4. 4.
    Blumgart, H. L., Hoff, H.E., Landowne, M. and Schlesinger, M.J. (1937). Experimental studies of the effect of temporary occlusion of coronary arteries in producing persistent electrocardiographic changes. Am. J. Med. Sci., 194, 493 – 502CrossRefGoogle Scholar
  5. 5.
    Penny, W.J. and Sheridan, D.J. (1983). Arrhythmias and cellular electrophysiological changes during myocardial “ischaemia” and reperfusion. Cardiovasc. Res., 17, 363 – 72PubMedCrossRefGoogle Scholar
  6. 6.
    Dennis, S. C., Yellon, D.M., Frasch, F., Anderson, G.J. and Hearse, D.J. (1983). The effect of ischaemia on metabolism and arrhythmias. Int. J. Cardiol., 2, 461 – 76PubMedCrossRefGoogle Scholar
  7. 7.
    Kleber, A.G., Janse, M. J., van Capelle, F. J. L. and Durrer, D. (1978). Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischaemia in the pig heart determined by extracellular and intracellular recordings. Circ. Res., 42, 603 – 13PubMedGoogle Scholar
  8. 8.
    Daugherty, A., Frayn, K. N., Redfern, W. S. and Woodward, B. (1986). The role of catecholamines in the production of ischaemia-induced ventricular arrhythmias in the rat in vivoand in vitro. Br. J. Pharmacol., 87, 265 – 77PubMedGoogle Scholar
  9. 9.
    Manning, A.S., Rinoshita, K., Buschmans, E., Coltart, D. J. and Hearse, D. J. (1985). The genesis of arrhythmias during myocardial ischemia. Dissociation between changes in cyclic adenosine monophosphate and electrical instability in the rat. Circ. Res., 57, 668 – 75PubMedGoogle Scholar
  10. 10.
    Janse, M. J., van Capelle, F. J. L., Morsink, H., Kleber, A. G., Wilms-Schopman, F., Cardinal, R., Nauman D’Almoncourt, C. and Durrer, D. (1980). Flow of injury current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischaemia in isolated porcine and canine hearts. Circ. Res., 47, 151 – 65PubMedGoogle Scholar
  11. 11.
    Sheridan, D. J., Penkoske, P.A., Sobel, B.E. and Corr, P.B. (1980). Alpha adrenergic contributions to dysrhythmia during myocardial ischemia and reperfusion in cats. J. Clin. Invest., 65, 161 – 71PubMedCrossRefGoogle Scholar
  12. 12.
    Ebert, P.A., Vanderbeek, R.B., Allgood, R.J. and Sabiston, D.C. Jr. (1970). Effect of chronic cardiac denervation on arrythmias after coronary artery ligation. Cardiovasc. Res., 4, 141 – 7PubMedCrossRefGoogle Scholar
  13. 13.
    Downar, E., Janse, M. J. and Durrer, D. (1977). The effect of acute coronary artery occlusion on sub-epicardial transmembrane potentials in the intact porcine heart. Circulation, 56, 217 – 34PubMedGoogle Scholar
  14. 14.
    Kaplinsky, E., Ogawa, S., Michelson, E.L. and Dreifus, L. S. (1981). Instantaneous and delayed ventricular arrhythmias after reperfusion of acutely ischaemic myocardium: evidence of multiple mechanisms. Circulation, 63, 333 – 40PubMedCrossRefGoogle Scholar
  15. 15.
    Culling, W., Penny, W.J., Lewis, M.J., Middleton, K. and Sheridan, D.J. (1984). Effects of myocardial catecholamine depletion on cellular electrophysiology and arrhythmias during ischaemia and reperfusion. Cardiovasc. Res., 18, 675 – 82PubMedCrossRefGoogle Scholar
  16. 16.
    Penny, W.J., Culling, W., Lewis, M.J. and Sheridan, D.J. (1985). Antiarrhythmic and electrophysiological effects of alpha adrenoceptor blockade during myocardial ischaemia and reperfusion in isolated guinea-pig heart. J. Molec. Cell. Cardiol., 17, 399 – 409CrossRefGoogle Scholar
  17. 17.
    Balke, C.W., Kaplinsky, E., Nichelson, E.L., Naito, N. and Dreifus, L.S. (1981). Reperfusion ventricular tachyarrhythmias correlation with antecedent coronary artery occlusion, tachyarrhythmias and duration of myocardial ischaemia. Am. Heart. J., 101, 449 – 56PubMedCrossRefGoogle Scholar
  18. 18.
    Nadeau, R. A. and de Champlain, J. (1979). Plasma catecholamines in acute myo-cardial infarction. Am. Heart. J., 98, 548 – 54PubMedCrossRefGoogle Scholar
  19. 19.
    Strang, R. C., Vetter, N., Rowe, M. J. and Oliver, M. F. (1974). Plasma cyclic AMP and total catecholamines during acute myocardial infarction in man. Eur. J. Clin. Invest., 4, 115 – 19Google Scholar
  20. 20.
    Riemersma, R. A. (1982). Myocardial catecholamine release in acute myocardial ischaemia; relationship to cardiac arrhythmias. In Parratt, J.R. (ed.) Early Arrhythmias Resulting from Myocardial Ischaemia: Mechanisms and Prevention by Drugs, pp. 125 – 38. ( London: Macmillan )Google Scholar
  21. 21.
    Hirche, J., Franz, C., Bos, L., Bissig, R., Lang, R. and Schramm, M. (1980). Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. J. Molec. Cell. Cardiol., 12, 579 – 93CrossRefGoogle Scholar
  22. 22.
    Sethi, V., Haider, B., Ahmed, S.S., Olderwurtel, H.A. and Regan, T.J. (1973). Influences of beta-blockade and chemical sympathectomy on myocardial function and arrhythmias in acute ischaemia. Cardiovasc. Res., 7, 740 – 7PubMedCrossRefGoogle Scholar
  23. 23.
    Maling, H. M., Colm, V. M. and Highman, B. (1959). The effects of coronary occlusion in dogs treated with reserpine and in dogs treated with phenoxy- benzamine. J. Pharmacol. Exp Ther, 127, 229 – 35Google Scholar
  24. 24.
    Muller, C.A., Opie, L.H., Hamm, C.W., Peisach, M. and Gihwala, D. (1986). Prevention of ventricular fibrillation by metoprolol in a pig model of acute myo-cardial ischaemia: absence of a major arrhythmogenic role for cyclic AMP. J. Molec. Cell. Cardiol., 18, 375 – 87CrossRefGoogle Scholar
  25. 25.
    Culling, W., Penny, W.J. and Sheridan, D.J. (1984). Effects of sotalol on arrhythmias and electrophysiology during myocardial ischaemia and reperfusion. Cardiovasc. Res., 18, 397 – 404PubMedCrossRefGoogle Scholar
  26. 26.
    Mukherji, A., Wong, T.M., Buja, M., Lefkowitz, R.J. and Willerson, J.T. (1979). Beta-adrenergic and muscarinic cholinergic receptors in canine myocardium. J. Clin. Invest., 64, 1423 – 8CrossRefGoogle Scholar
  27. 27.
    Stephenson, S.E., Cole, R. K., Parrish, T. F. et al. (1960). Ventricular fibrillation during and after coronary artery occlusion: incidence and protection afforded by various drugs. Am. J. Cardiol., 5, 77 – 85CrossRefGoogle Scholar
  28. 28.
    Stewart, J.R., Burmeister, W.E., Burmeister, J. and Lucchesi, B. R. (1980). Electrophysiologic and antiarrhythmic effects of phentolamine in experimental coronary artery occlusion and reperfusion in the dog. J. Cardiovasc. Pharmacol., 2, 77 – 91PubMedCrossRefGoogle Scholar
  29. 29.
    Sheridan, D.J. (1982). Myocardial alpha adrenoceptors and arrhythmias induced by myocardial ischaemia. In Parratt, J. R. (ed.) Early Arrhythmias Resulting from Myocardial Ischaemia; Mechanisms and Prevention by Drugs, pp. 317 – 28 ( London: MacMillan )Google Scholar
  30. 30.
    Rosen, M. R., Gelband, H. and Hoffman, B. E. (1971). Effects of phentolamine on electrophysiological properties of isolated canine Purkinje fibres. J. Pharmacol. Exp. Ther., 179, 586 – 93PubMedGoogle Scholar
  31. 31.
    Culling, W., Penny, W.J., Cunliffe, G., Flores, N.A. and Sheridan, D.J. (1987). Arrhythmogenic and electrophysiological effects of alpha adrenoceptor stimulation during myocardial ischaemia and reperfusion. J. Molec. Cell. Cardiol., 19, 251 – 8CrossRefGoogle Scholar
  32. 32.
    Corr, B., Shayman, J. A., Kramer, J. B. and Kipris, R.J. (1981). Increased alpha- adrenergic receptors in ischaemic cat myocardium. A potential mediator of elec-trophysiological derangements. J. Clin. Invest., 67, 1232 – 6PubMedCrossRefGoogle Scholar
  33. 33.
    Crome, R., Hearse, D. J., Maguire, M.E. and Manning, A. S. (1985). Dissociation between reperfusion arrythmias and increases in ventricular alpha! receptor density in the anaesthetised rat. Br. J. Pharmacol., 86, 498 PGoogle Scholar
  34. Broadley, K.J., Chess-Williams, R. G. and Sheridan, D.J. (1985). [3H]-prazosin binding during ischaemia and reperfusion in the guinea pig Langendorff heart. Br. J. Pharmacol., 86, 759 PGoogle Scholar
  35. 35.
    Corr, P. B., Gross, R. W. and Sobel, B. E. (1984). Amphipathic metabolites and membrane dysfunction in ischaemic myocardium. Circ. Res., 55, 135 – 54PubMedGoogle Scholar
  36. 36.
    Flacke, W., Atanackovic, D., Gillis, R. A. and Alper, M. H. (1967). The actions of histamine on the mammalian heart. J. Pharmacol. Exp. Ther., 155, 271 – 8PubMedGoogle Scholar
  37. 37.
    Flynn, S.B., Gristwood, R.W. and Owen, D. A. A. (1978). Differentiation of the roles of histamine H1 and H2-receptors in the mediation of the effects of histamine in the isolated working heart of the guinea pig. Br. J. Pharmacol., 65, 127 – 37Google Scholar
  38. 38.
    Capurro, N. and Levi, R. (1975). The heart as a target organ in systemic allergic reactions. Comparison of cardiac anaphylaxis in vivoand in vitro. Circ. Res., 36, 520 – 8PubMedGoogle Scholar
  39. 39.
    Gaide, M.S., Altman, C. B., Cameron, J. S., Kaiser, C.J., Crevar, G., Myerburg, R.J. and Bassett, A. L. (1984). Histamine modification of spontaneous rate and rhythm in infarcted canine ventricle. Agents Actions, 15, 488 – 93PubMedCrossRefGoogle Scholar
  40. 40.
    Cameron, J. S., Gaide, M.S., Goad, P. L., Altman, C.B., Cuevas, J., Myerburg, R.J. and Bassett, A. L. (1985). Enhanced adverse electrophysiologic effects of histamine after myocardial infarction in guinea pigs. J. Pharmacol. Exp. Ther., 232, 480 – 4PubMedGoogle Scholar
  41. 41.
    Woodward, B. and Zakaria, M. V. M. (1985). Effect of some free radical scavengers on reperfusion induced arrhythmias in the isolated rat heart. J. Molec. Cell. Cardiol., 17, 485 – 93CrossRefGoogle Scholar
  42. 42.
    Bernier, M., Hearse, D.J. and Manning, A.S. (1986). Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with ‘anti-free radical’ interventions and a free radical-generating system in the isolated perfused rat heart. Circ. Res., 58, 331 – 40PubMedGoogle Scholar
  43. 43.
    Huang, X.D., Lee, A.Y.S., Wong, T.M., Zhan, C. Y. and Zhao, Y.Y. (1986). Naloxone inhibits arrhythmias induced by coronary artery occlusion and reperfusion in anaesthetised dogs. Br. J. Pharmacol., 87, 475 – 7PubMedGoogle Scholar
  44. 44.
    Parratt, J. R. and Sitsapesan, R. (1986). Stereospecific antiarrhythmic effect of opioid receptor antagonists in myocardial ischaemia. Br. J. Pharmacol., 87, 621 – 2PubMedGoogle Scholar
  45. 45.
    de Jong, J. W. (1979). Biochemistry of acutely ischemic myocardium. In Schaper, W. (ed.) The Pathophysiology of Myocardial Perfusion, pp. 719 – 50. ( Amsterdam: Elsevier/North Holland Biomedical Press )Google Scholar
  46. 46.
    Lubbe, W.F., Bricknell, O.L., Podzuweit, T. and Opie, L. H. (1976). Cyclic AMP as a determinant of vulnerability to ventricular fibrillation in the isolated rat heart. Cardiovasc. Res., 10, 697 – 702PubMedCrossRefGoogle Scholar
  47. Corr, P.B., Witkowski, F.X. and Sobel, B.E. (1978). Mechanisms contributing to malignant dysrhythmias induced by ischaemia in the cat. J. Clin. Invest., 61, 109– 19Google Scholar
  48. 48.
    Podzuweit, T., Dalby, A. J., Cherry, G. W. and Opie, L. H. (1978). Cyclic AMP levels in ischaemic and non-ischaemic myocardium following coronary artery ligation: relation to ventricular fibrillation. J. Molec. Cell. Cardiol., 10, 81 – 94CrossRefGoogle Scholar
  49. 49.
    Drummond, R. W. and Sordahl, L. A. (1981). Temporal changes in adenylate cyclase activity in acutely ischaemic dog heart: evidence of functional subunit damage. J. Molec. Cell. Cardiol., 13, 323 - 30CrossRefGoogle Scholar
  50. 50.
    Hill, J. L. and Gettes, L. S. (1980). Effects of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation, 61, 768 – 78PubMedGoogle Scholar
  51. 51.
    Bourdillon, P. D. V. and Poole-Wilson, P. A. (1981). Effects of ischaemia and reper-fusion on calcium exchange and mechanical function in isolated rabbit myocardium. Cardiovasc. Res., 15, 121 – 30PubMedCrossRefGoogle Scholar
  52. 52.
    Whalen, D. A., Hamilton, D.G., Ganote, C.E. and Jennings, R.B. (1974). Effects of a transient period of ischaemia on myocardial cells. I. Effects on cell volume regulation. Am. J. Pathol., 74, 381 – 97PubMedGoogle Scholar
  53. 53.
    Schaper, J. (1979). Ultrastructure of the myocardium in acute ischemia. In Schaper, W. (ed.) The Pathophysiology of Myocardial Perfusion, pp. 581 – 673. ( Amsterdam: Elsevier/North Holland Biomedical Press )Google Scholar
  54. 54.
    Kloner, R. A. and Braunwald, E. (1980). Observations on experimental myocardial ischaemia. Cardiovasc. Res., 14, 371 – 95PubMedCrossRefGoogle Scholar
  55. 55.
    Kloner, R.A. (1982). The coronary microvasculature and experimental ischemic injury. In Kalsner, S. (ed.) The Coronary Artery, pp. 621 – 43. ( London: Croom Helm Ltd )Google Scholar
  56. 56.
    Reimer, K.A., Lowe, J. E., Rasmussen, M. M. and Jennings, R.B. (1977). The wavefront phenomenon of ischaemic cell death. 1. Myocardial infarct size vs. duration of coronary occlusion in dogs. Circulation, 56, 786 – 94PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • N. A. Flores
  • D. J. Sheridan

There are no affiliations available

Personalised recommendations