The Role of Phagocytes in Non-Infectious Diseases

  • B. Styrt
Part of the Immunology And Medicine Series book series (IMME, volume 11)


Most of the investigations of phagocytic cell function have focussed on the role of these cells in protecting the host against infection. This is clearly their most urgent function since the absence of phagocytes predictably leads to overwhelming infection frequently death in spite of the antimicrobial resources of the modern pharmacopoeia. It has long been evident, however, that phagocytes do not confine themselves to killing bacteria without affecting the local environment. Most of the antimicrobial strategies of the phagocyte are also active against host tissue, often to its detriment, occasionally to its benefit.


Kawasaki Disease Familial Mediterranean Fever Lysosomal Enzyme Polymorphonuclear Leukocyte Respiratory Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Goldstein, I.M. (1976). Polymorphonuclear leukocyte lysosomes and immune tissue injury. Prog. Allergy 20, 301–40PubMedGoogle Scholar
  2. 2.
    Wright, D. G. (1982). The neutrophil as a secretory organ of host defense. In Gallin, J. I. and Fauci, A. S. (eds.), Advances in Host Defense Mechanisms, Vol. 2, pp. 75–110. (NY: Raven Press)Google Scholar
  3. 3.
    Bakkenist, A. R. T., Wever, R., Vulsma, T., Plat, H. and van Gelder, B. F. (1978). Isolation procedure and some properties of myeloperoxidase from human leucocytes. Biochem. Biophys. Acta, 524, 45–54PubMedGoogle Scholar
  4. 4.
    Garcia, R.C., Peterson, C.G.B., Segal, A.W. and Venge, P. (1985). Elastase in the different primary granules of the human neutrophil. Biochem. Biophys. Res. Commun., 132, 1130–4PubMedGoogle Scholar
  5. 5.
    Babior, B.M., Kipnes, R. S and Curnutte, J.T. (1973). Biological defence mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. J. Clin. Invest., 52, 741–4PubMedGoogle Scholar
  6. 6.
    Root, R. K., Metcalf, J., Oshino, N. and Chance, B. (1975). H2O2 release from human granulocytes during phagocytosis. J. Clin. Invest., 55, 945–55PubMedGoogle Scholar
  7. 7.
    Bannister, J.V., BellaVite, P., Davoli, A., Thornally, P.J. and Rossi, F. (1982). The generation of hydroxyl radicals following superoxide production by neutrophil NADPH oxidase. FEBS Lett., 150, 300–2PubMedGoogle Scholar
  8. 8.
    Fantone, J. C. and Ward, P. A. (1985). Polymorphonuclear leukocyte-mediated cell and tissue injury: oxygen metabolites and their relations to human disease. Hum. Pathol., 16, 973–8PubMedGoogle Scholar
  9. 9.
    Thomas, E. L., Grisham, M. B., Melton, D. F. and Jefferson, M. M. (1985). Evidence for a role of taurine in the in vitro oxidative toxicity of neutrophils towards erythrocytes. J. Biol. Chem., 260, 3321–9PubMedGoogle Scholar
  10. 10.
    Aust, S. D., Thomas, C. E., Morehouse, L. A., Saito, M. and Bucher, J. R. (1986). Active oxygen and toxicity. Adv. Exp. Med. Biol., 197, 513–26PubMedGoogle Scholar
  11. 11.
    Wentzell, B. and Epand, R. M. (1978). Stimulation of the release of prostaglandins from polymorphonuclear leukocytes by the calcium ionophore A23187. FEBS Lett., 86, 255–8PubMedGoogle Scholar
  12. 12.
    Smith, D.M., Walsh, C.E., deChatelet, L. R. and Waite, M. (1983). Arachidonic acid metabolism in polymorphonuclear leukocytes from patients with chronic granulomatous disease. Infect. Immun., 40, 1230–3PubMedGoogle Scholar
  13. 13.
    Marcus, A. J., Safier, L.B., Broekman, M.J., Ullman, H.L., Islam, N., Sorrell, T.C., Serhan, C. N., Weissmann, G., Oglesby, T. D. and Gorman, R. R. (1984). Production of metabolic products of arachidonic acid during cell-cell interactions. J. Allergy Clin. Immunol., 74, 338–42PubMedGoogle Scholar
  14. 14.
    Vissers, M. C. M., Day, W. A. and Winterbourn, C. C. (1985). Neutrophils adherent to a nonphagocytosable surface (glomerular basement membrane) produce oxidants only at the site of attachment. Blood, 66, 161–6PubMedGoogle Scholar
  15. 15.
    Vogt, W. (1986). Anaphylotaxins: possible roles in disease. Complement, 3, 177–88PubMedGoogle Scholar
  16. 16.
    Elsbach, P. (1980). Degradation of microorganisms by phagocytic cells. Rev Infect. Dis., 2, 106–28PubMedGoogle Scholar
  17. 17.
    Schraufstatter, I. V., Hinshaw, D. B., Hyslop, P. A., Spragg, R. G. and Cochrane, C. G. (1986). Oxidant injury of cells. DNA strand breaks activate polyadenosine diphosphate- ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J. Clin. Invest., 77, 1312–20PubMedGoogle Scholar
  18. 18.
    Walsh, M.J., Shasby, D. M. and Husted, R. M. (1985). Oxidants increase paracellular permeability in a cultured epithelial cell line. J. Clin. Invest., 76, 1155–68Google Scholar
  19. 19.
    Sepe, S. M. and Clark, R. A. (1985). Oxidant membrane injury by the neutrophil myeloperoxidase system. I. Characterization of a liposome model and injury by myeloperoxidase, hydrogen peroxide, and halides. J. Immunol., 134, 1888–95PubMedGoogle Scholar
  20. 20.
    Sepe, S. M. and Clark, R. A. (1985). Oxidant membrane injury by the neutrophil myeloperoxidase system. II. Injury by stimulated cells and protection by lipid-soluble antioxidants. J. Immunol., 134, 1896–901PubMedGoogle Scholar
  21. 21.
    Petty, H. R. and Francis, J. W. (1985). Novel fluorescence method to visualize antibody- dependent hydrogen peroxide-associated ‘killing’ of liposomes by phagocytes. Biophys. J., 47, 837–40PubMedGoogle Scholar
  22. 22.
    Gale, R. P. and Zighelboim, J. (1975). Polymorphonuclear leukocytes in antibody-dependent cellular cytotoxicity. J. Immunol., 114, 1047–51PubMedGoogle Scholar
  23. 23.
    Gale, R. P. and Zighelboim, J. (1979). Modulation of polymorphonuclear leukocyte- mediated antibody-dependent cellular cytoxicity. J. Immunol., 113, 1793–800Google Scholar
  24. 24.
    Klassen, D. K., Conkling, P. R. and Sagone, A. L., Jr. (1982). Activation of monocyte and granulocyte antibody-dependent cytotoxicity by phorbol myristate acetate. Infect. Immun., 35, 818–25PubMedGoogle Scholar
  25. 25.
    Dallegri, F., Patrone, F., Frumento, G., Ballestrero, A. and Sacchetti, C. (1985). Extracellular cytotoxicity by phagocytosing polymorphonuclear neutrophilic leukocytes: enhancement by a chemotactic stimulus. Exp. Hematol., 13, 209–14PubMedGoogle Scholar
  26. 26.
    Dallegri, F., Frumento, G., Ballestrero, A., Banchi, L. and Patrone, F. (1985). Cellular cytotoxicity mediated by granule-depleted neutrophil cytoplasts. Blut., 51, 97–102PubMedGoogle Scholar
  27. 27.
    Diener, A. M., Beatty, P. G., Ochs, H. D. and Harlan, J. M. (1985). The role of neutrophil membrane glycoprotein 150 (pg-150) in neutrophil-mediated endothelial cell injury in vitro. J. Immunol., 135, 537PubMedGoogle Scholar
  28. 28.
    Sibille, Y., Lwebuga-Mukasa, J. S., Polomski, L., Merrill, W. M., Ingbar, D. H. and Gee, J. B. L. (1986). An in vitro model for polymorphonuclear-leukocyte-induced injury to an extracellular matrix. Am. Rev. Resp. Dis., 134, 134–40PubMedGoogle Scholar
  29. 29.
    Skosey, J.L., Chow, D.C., Nusinow, S., May, J., Gestautas, V. and Niwa, Y. (1981). Effect of oxygen tension on human peripheral blood leukocytes: lysosomal enzyme release and metabolic responses during phagocytosis. J. Cell Biol., 88, 358–63PubMedGoogle Scholar
  30. 30.
    Weiss, S.J. and Regiani, S. (1984). Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. J. Clin. Invest., 73, 1297–303PubMedGoogle Scholar
  31. 31.
    Edelson, P.J. (1980). Monocytes and macrophages: aspects of their cell biology. In Weissman, G. (ed.). Cell Biology of Inflammation, pp. 469–95. (Elsevier-North Holland)Google Scholar
  32. 32.
    Fantone, J. C. and Ward, P. A. (1982). Role of oxygen-derived free radicals and metabolites in leukocyte-dependent inflammatory reactions. Am. J. Pathol., 107, 397–418Google Scholar
  33. 33.
    Davies, P. (1985). Macrophages as effector cells. Fed. Proc., 44, 2925–6PubMedGoogle Scholar
  34. 34.
    Dinarello, C. A. (1986). Interleukin-1: Amino acid sequences, multiple biological activities and comparison with tumor necrosis factor (cachectin). The Year in Immunology, 2, 68–9PubMedGoogle Scholar
  35. 35.
    Old, L. J. (1985). Tumor necrosis factor (TNF). Science, 230, 630PubMedGoogle Scholar
  36. 36.
    Ruggiero, V. and Baglioni, C. (1987). Synergistic anti-proliferative activity of interleukin- 1 and tumor necrosis factor. J. Immunol., 138, 661–3PubMedGoogle Scholar
  37. 37.
    Tate, R. M. and Repine, J.E. (1983). Neutrophils and the adult respiratory distress syndrome. Am. Rev. Resp. Dis.. 128, 552–9PubMedGoogle Scholar
  38. 38.
    Neutrophils and adult respiratory distress syndrome. (1984). Lancet, 2, 790–1Google Scholar
  39. 39.
    Andreadis, V. and Petty, T. L. (1985). Adult respiratory distress syndrome: problems and progress. Am. Rev. Resp. Dis., 132, 1344–6PubMedGoogle Scholar
  40. 40.
    Adult respiratory distress syndrome. (1986). Lancet, 1, 301–3Google Scholar
  41. 41.
    Glauser, F. L. and Fairman, R. P. (1985). The uncertain role of the neutrophil in increased permeability pulmonary edema. Chest, 88, 601–7PubMedGoogle Scholar
  42. 42.
    Ward, P. A., Till, G. O. and Beauchamp, C. (1983). Evidence for role of hydroxyl radical in complement and neutrophil-dependent tissue injury. Clin. Invest., 72, 789–801Google Scholar
  43. 43.
    Ward, P. A., Till, G.O., Hatherill, J.R., Annesley, T.M. and Kunkel, R.G. (1985). Systemic complement activation, lung injury, and products of lipid peroxidation. J. Clin. Invest., 76, 517–27PubMedGoogle Scholar
  44. 44.
    Rinaldo, J. E. and Pennock, B. (1986). Effects of ibuprofen on endotoxin-induced alveolitis: biphasic dose response and dissociation between inflammation and hypoxemia. Am. J. Med. Sci., 291, 29–38PubMedGoogle Scholar
  45. 45.
    Stevens, J. H., O’Hanley, P., Shapiro, J. M., Mihm, F. G., Satoh, P. S., Collins, J. A. and Raffin, T. A. (1986). Effects of anti-C5a antibodies on the adult respiratory distress syndrome in septic primates. J. Clin. Invest., 77, 1812–16PubMedGoogle Scholar
  46. 46.
    Hammerschmidt, D. E., Weaver, L. J., Hudson, L. D., Craddock, P. R. and Jacob, H. S. (1980). Association of complement activation and elevated plasma-C5a with adult respiratory distress syndrome: pathophysiological relevance and possible prognostic value. Lancet, 1, 947–9PubMedGoogle Scholar
  47. 47.
    Rinaldo, J. E. and Rogers, R. M. (1986). Adult respiratory distress syndrome. N. Engl. J. Med., 315, 578–80PubMedGoogle Scholar
  48. 48.
    Zimmerman, G.A., Renzetti, A. D. and Hill, H. R. (1984). Granulocyte adherence in pulmonary and systemic arterial blood samples from patients with adult respiratory distress syndrome. Am. Rev. Resp. Dis., 129, 798–804PubMedGoogle Scholar
  49. 49.
    Idell, S., Kucich, U., Fein, A., Kueppers, F., James, H.L., Walsh, P.N., Weinbaum, G., Coiman, R.W. and Cohen, A. B. (1985). Neutrophil elastase-releasing factors in bronchoalveolar lavage from patients with adult respiratory distress syndrome. Am. Rev. Resp. Dis., 132, 1098–105PubMedGoogle Scholar
  50. 50.
    Weiland, J. E., Davis, W. B., Holter, J. F., Mohammed, J. R., Dorinsky, P. M. and Gadek, J. E. (1986). Lung neutrophils in the adult respiratory distress syndrome. Am. Rev. Resp. Dis., 133, 218–25PubMedGoogle Scholar
  51. 51.
    Baldwin, S. R., Simon, R.H., Grum, C.M., Ketai, L.H., Boxer, L. A. and Devall, L.J. (1986). Oxidant activity in expired breath of patients with adult respiratory distress syndrome. Lancet, 1, 11–13PubMedGoogle Scholar
  52. 52.
    Laufe, M. D., Simon, R. H., Flint, A. and Keller J. B. (1986). Adult respiratory distress syndrome in neutropenic patients. Am. J. Med. 80, 1022–6PubMedGoogle Scholar
  53. 53.
    Ognibene, F.P., Martin, S.E., Parker, M.M., Schlesinger, T., Roach, P., Burch, C., Shelhamer, J. H. and Parrillo, J. E. (1986). Adult respiratory distress syndrome in patients with severe neutropenia. N. Engl. J. Med., 315, 547–51PubMedGoogle Scholar
  54. 54.
    Rinaldo, J. E. and Borovetz, H. (1985). Deterioration of oxygenation and abnormal lung microvascular permeability during resolution of leukopenia in patients with diffuse lung injury. Am. Rev. Resp. Dis., 131, 579–83PubMedGoogle Scholar
  55. 55.
    Barry, B. E. and Crapo, J. D. (1985). Patterns of accumulation of platelets and neutrophils in rat lungs during exposure to 100% and 85% oxygen. Am. Rev. Resp. Dis., 132, 548–555PubMedGoogle Scholar
  56. 56.
    Chapman, H. A., Jr., and Stone, O. L. (1985). A fibrinolytic inhibitor of human alveolar macrophages. Am. Rev. Resp. Dis., 132, 569–75PubMedGoogle Scholar
  57. 57.
    Rinaldo, J. E., Henson, J. E., Dauber, J. H. and Henson, P. M. (1985). Role of alveolar macrophages in endotoxin-induced neutrophilic alveolitis in rats. Tissue Cell, 17,461–72PubMedGoogle Scholar
  58. 58.
    Krieger, B. P., Loomis, W. H. and Spragg, R. G. (1984). Granulocytes and hyperoxia act synergistically in causing acute lung injury. Exp. Lung Res., 7, 77–83PubMedGoogle Scholar
  59. 59.
    Rinaldo, J. E., Dauber, J. H., Christman, J. and Rogers, R. M. (1984). Neutrophil alveolitis following endotoxemia. Am. Rev. Resp. Dis., 130, 1065–71PubMedGoogle Scholar
  60. 60.
    Christman, J. W., Rinaldo, J. E., Henson, J. E., Moore, S. A. and Dauber, J. H. (1985). Modification by hyperoxia in vivo of endotoxin-induced neutrophil alveolitis in rats. Am. Rev. Resp. Dis., 132, 152–8PubMedGoogle Scholar
  61. 61.
    Weigelt, J. A., Norcross, J. F., Borman, K. R. and Snyder, W. H. III. (1985). Early steroid therapy for respiratory failure. Arch. Surg., 120, 536–40PubMedGoogle Scholar
  62. 62.
    Fein, A.M., Lippmann, M., Holtzman, H., Eliraz, A. and Goldberg, S.K. (1983). The risk factors, incidence, and prognosis of ARDS following septicemia. Chest, 83, 40–2PubMedGoogle Scholar
  63. 63.
    Snider, G. L., Lucey, E. L. and Stone, P.J. (1986). Animal models of emphysema. Am. Rev. Resp. Dis., 133, 149–69PubMedGoogle Scholar
  64. 64.
    Snider, G. L., Lucey, E. C., Christensen, T. G., Stone, P. J., Calore, J.D., Catanese, A. and Franzblau, C. (1984). Emphysema and bronchial secretory cell metaplasia induced in hamsters by human neutrophil products. Am. Rev. Resp. Dis., 129, 155–60PubMedGoogle Scholar
  65. 65.
    Breuer, R., Christensen, T. G., Lucey, E. C., Stone, P. J. and Snider, G. L. (1985). Quantitative study of secretory cell metaplasia induced by human neutrophil elastase in the large bronchi of hamsters. J. Lab. Clin. Med., 105, 635–40PubMedGoogle Scholar
  66. 66.
    Boudier, C., Laurent, P. and Bieth, J. G. (1982). Leukoproteinases and pulmonary emphysema: cathepsin G and other chymotrypsin-like proteinases enhance the elastolytic activity of elastase on lung elastin. Adv. Exp. Biol. Med., 167, 313–17Google Scholar
  67. 67.
    Lucey, E. C., Stone, P. J., Breuer, R., Christensen, T. G. Calore, J. D., Catanese, A., Franzblau, C. and Snider, G. L. (1985). Effect of combined human neutrophil cathepsin G and elastase on induction of secretory cell metaplasia and emphysema in hamsters, with in vitro observations on elastolysis by these enzymes. Am. Rev. Resp. Dis., 132, 362–6PubMedGoogle Scholar
  68. 68.
    Hoidal, J. R., Kao, R. and Gray, B. H. (1986). Proteinase 3: a distinct polymorphonuclear leukocyte proteinase which produces emphysema in hamsters. (Abstr.) Clin. Res., 34, 578AGoogle Scholar
  69. 69.
    Ohlsson, K., Fryksmark, U., Ohlsson, M. and Tegner, H. (1982). Interaction of granulocyte proteases with inhibitors in pulmonary diseases. Adv. Exp. Med. Biol., 167, 299–312Google Scholar
  70. 70.
    Ossanna, C. J., Test, S. T., Matheson, N. R., Regiani, S. and Weiss, S. J. (1986). Oxidative regulation of neutrophil elastase-alpha-1 -proteinase inhibitor interactions. J. Clin. Invest., 77, 1939–51PubMedGoogle Scholar
  71. 71.
    Weiss, S. J., Curneutte, J.T and Regiani, S. (1986). Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J. Immunol., 136, 636–41PubMedGoogle Scholar
  72. 72.
    Drath, D. B., Shorey, J. M. and Huber, G. L. (1981). Functional and metabolic properties of alveolar macrophages in response to the gas phase of tobacco smoke. Infect. Immun., 34, 11–15PubMedGoogle Scholar
  73. 73.
    McGowan, S.E., Stone, P. J., Snider, G.L. and Franzblau, C. (1984). Alveolar macrophage modulation of proteolysis by neutrophil elastase in extracellular matrix. Am. Rev. Resp. Dis., 130, 734–9PubMedGoogle Scholar
  74. 74.
    Damiano, V.V., Tsang, A., Kucich, U., Abrams, W. R., Rosenbloom, J., Kimbel, P., Fallaghnejad, M. and Weinbaum, G. (1986). Immunolocalization of elastase in human emphysematous lungs. J. Clin. Invest., 78, 482–93PubMedGoogle Scholar
  75. 75.
    Carrell, R.W. (1986). Alpha-1-antitrypsin: molecular pathology, leukocytes, and tissue damage. J. Clin. Invest., 78, 1427–31PubMedGoogle Scholar
  76. 76.
    Weitz, J. I., Landman, S. L., Crowley, K. A., Birken, S. and Morgan, F. J. (1986). Development of an assay for in vivo human neutrophil elastase activity. J. Clin. Invest., 78, 155–62PubMedGoogle Scholar
  77. 77.
    Ogden, B.E., Murphy, S.A., Saunders, G.C., Pathak, D. and Johnson, J.D. (1984). Neonatal lung neutrophils and elastase/proteinase inhibitor imbalance. Am. Rev. Resp. Dis., 130, 817–21PubMedGoogle Scholar
  78. 78.
    Goldstein, W. and Doering, G. (1986). Lysosomal enzymes from polymorphonuclear leukocytes and proteinase inhibitors in patients with cystic fibrosis. Am. Rev. Resp. Dis., 134, 49–56PubMedGoogle Scholar
  79. 79.
    Suter, S., Schaad, U. B., Tegner, H., Ohlsson, K., Desgrandchamps, D. and Waldvogel, F. A. (1986). Levels of free granulocyte elastase in bronchial secretions from patients with cystic fibrosis: effect of antimicrobial treatment against Pseudomonas aeruginosa. J. Infect. Dis., 153, 902–9PubMedGoogle Scholar
  80. 80.
    Bruce, M. C., Poncz, L., Klinger, J. D., Stern, R. C., Tomashefski, J. F., Jr. and Dearborn, D. G. (1985). Biochemical and pathologic evidence for proteolytic destruction of lung connective tissue in cystic fibrosis. Am. Rev. Resp. Dis., 132, 529–35PubMedGoogle Scholar
  81. 81.
    Suter, S., Schaad, U.B., Roux, L., Nydegger, U.E. and Waldvogel, F.A. (1984). Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J. Infect. Dis., 149, 523–31PubMedGoogle Scholar
  82. 82.
    Brigham, K. L. and Meyrick, B. (1984). Interactions of granulocytes with the lungs. Circ. Res., 54, 623–35PubMedGoogle Scholar
  83. 83.
    Neijens, H. J., Raatgeepp, R. E., Degenhart, H. J., Duiverman, E. J. and Kerrebijn, K. F. (1984). Altered leukocyte response in relation to the basic abnormality in children with asthma and bronchial hyperresponsiveness. Am. Rev. Resp. Dis., 130, 744–7PubMedGoogle Scholar
  84. 84.
    Lee, T. H., Nagakura, T., Cromwell, O., Brown, M. J., Causon, R. and Kay, A. B. (1984). Neutrophil chemotactic activity and histamine in atopic and nonatopic subjects after exercise-induced asthma. Am. Rev. Resp. Dis., 129, 409–12PubMedGoogle Scholar
  85. 85.
    Metzger, W.J., Richerson, H.B. and Wasserman, S.I. (1986). Generation and partial characterization of eosinophil chemotactic activity and neutrophil chemotactic activity during early and late-phase asthmatic response. J. Allergy Clin. Immunol., 78, 282–90PubMedGoogle Scholar
  86. 86.
    Larsen, G. L., Wilson, M. C., Clark, R. A. F. and Behrens, B. L. (1987). The inflammatory reaction in the airways in an animal model of the late asthmatic response. Fed. Proc., 46, 105–12PubMedGoogle Scholar
  87. 87.
    Hinson, J. O., Jr., Hutchison, A.A., Brigham, K. L., Meyrick, B.O. and Snapper, J. R. (1984). Effects of granulocyte depletion on pulmonary responsiveness to aerosol histamine. J. Appl. Physiol., 56, 411–17PubMedGoogle Scholar
  88. 88.
    Murphy, K.R., Wilson, M.C., Irvin, C.G., Glezen, L.S., Marsh, W.R., Haslett, C., Henson, P.M. and Larsen, G.L. (1986). The requirement for polymorphonuclear leukocytes in the late asthmatic response and heightened airways reactivity in an animal model. Am. Rev. Resp. Dis., 134, 62–8PubMedGoogle Scholar
  89. 89.
    Berliner, S., Weinberger, M., Ben-Bassat, M., Lavie, G., Weinberger, A., Giller, S. and Pinkhas, J. (1985). Amphotericin B causes aggregation of neutrophils and enhances pulmonary leukostasis. Am. Rev. Resp. Dis., 132, 602–5PubMedGoogle Scholar
  90. 90.
    O’Byrne, P. M., Walters, E. H., Gold, B. D., Aizawa, H. A., Fabbri, L. M., Alpert, S. E., Nadel, J.A. and Holtzman, M.J. (1984). Neutrophil depletion inhibits airway hyperresponsiveness induced by ozone exposure. Am. Rev. Resp. Dis., 130, 214–19PubMedGoogle Scholar
  91. 91.
    Adamson, I. Y. R. and Bowden, D. H. (1984). Role of polymorphonuclear leukocytes in silica-induced pulmonary fibrosis. Am. J. Pathol., 117, 37–43PubMedGoogle Scholar
  92. 92.
    Donaldson, K., Slight, J., Hannant, D. and Bolton, R.E. (1985). Increased release of hydrogen peroxide and superoxide anion from asbestos-primed macrophages. Inflammation, 9, 139–47PubMedGoogle Scholar
  93. 93.
    Moseley, P. L., Shasby, D. M., Brady, M. and Hunninghake, G. W. (1984). Lung parenchymal injury induced by bleomycin. Am. Rev. Resp. Dis., 130, 1082PubMedGoogle Scholar
  94. 94.
    McCord, J. M. and Fridovich, I. (1978). The biology and pathology of oxygen radicals. Ann. Intern. Med., 89, 122–7PubMedGoogle Scholar
  95. 95.
    Addo, E. and Poon-King, T. (1986). Leucocyte suppression in treatment of 72 patients with paraquat poisoning. Lancet, 1, 1117–20PubMedGoogle Scholar
  96. 96..
    Cyclophosphamide for paraquat poisoning? (1986). Lancet,2 375–6Google Scholar
  97. 97.
    Weissman, G. and Korchak, H. (1984). Rheumatoid arthritis. The role of neutrophil activation. Inflammation, 8, S3-S14Google Scholar
  98. 98.
    Abramson, S., Edelson, H., Kaplan, H., Given, W. and Weissman, G. (1982). The neutrophil in rheumatoid arthritis: its role and the inhibition of its activation by nonsteroidal anti-inflammatory drugs. Semin. Arthr. Rheum., 13, 148–53Google Scholar
  99. 99.
    Vinegar, R., Truax, J.F., Selph, J. L., Johnson, P. R., Venable, A. L. and McKenzie, K. K. (1987). Pathway to carrageenan-induced inflammation in the hind limb of the rat. Fed. Proc., 46, 118–26PubMedGoogle Scholar
  100. 100.
    Dinarello, C. A. and Mier, J. W. (1987). Lymphokines. N. Engl. J. Med., 317, 940–94PubMedGoogle Scholar
  101. 101.
    Lotz, M., Tsoukas, C.D., Fong, S., Dinarello, C. D., Carson, D. A. and Vaughan, J.H. (1986). Release of lymphokines after infection with Epstein Barr virus in vitro. J. Immunol, 136, 3643–8PubMedGoogle Scholar
  102. 102.
    Cavender, D., Haskard, D., Yu, C. L., Uguchi, T., Miossec, P., Oppenheimer-Marks, N. and Ziff, M. (1987). Pathways to chronic inflammation in rheumatoid synovitis. Fed. Proc., 46, 113–17PubMedGoogle Scholar
  103. 103.
    Greenwald, R. A. and Moy, W. W. (1979). Inhibition of collagen gelation by action of the superoxide radical. Arth. Rheum., 22, 251–9Google Scholar
  104. 104.
    Schalkwijk, J., van der Berg, W. B., van de Putte, L. B. A., Joosten, L. A. B. and van der Bersselaar, L. (1985). Cationization of catalase, peroxidase, and superoxide dismutase. J. Clin. Invest., 76, 198–205PubMedGoogle Scholar
  105. 105.
    Pasquier, C., Mach, P. S., Raichvarg, D., Sarfati, G., Amor, B. and Delbarre, F. (1984). Manganese-containing superoxide-dismutase deficiency in polymorphonuclear leukocytes of adults with rheumatoid arthritis. Inflammation, 8, 27–32PubMedGoogle Scholar
  106. 106.
    Ignarro, L.J. (1974). Regulation of lysosomal enzyme secretion: role in inflammation. Agents Actions, 4, 241–58PubMedGoogle Scholar
  107. 107.
    Weissman, G., Spilberg, I. and Krakauer, K. (1969). Arthritis induced in rabbits by lysates of granulocyte lysosomes. Arth. Rheum., 12, 103–16Google Scholar
  108. 108.
    Havemann, K. and Gramse, M. (1982). Physiology and pathology of neutral proteinases of human granulocytes. Adv. Exp. Biol. Med., 167, 1–20Google Scholar
  109. 109.
    Krane, S. M. and Amento, E. P. (1983). Cellular interactions and control of collagenase secretion in the synovium. J. Rheumatol., (Suppl. 11) 10, 7–12Google Scholar
  110. 110.
    Virca, G.D., Mallya, R.K., Pepys, M.B. and Schnebli, H.P. (1982). Quantitation of human leukocyte elastases, cathepsin G, alpha-2-macroglobulin, and alpha-1-proteinase inhibitor in osteoarthritis and rheumatoid arthritis synovial fluids. Adv. Exp. Biol. Med., 167, 345–53Google Scholar
  111. 111.
    Matzner, Y., Brzezinski, A. and Babior, B.M. (1984). Deficiency of a C5a-directed regulator of inflammation in familial Mediterranean fever (Abstr.). Clin. Res., 32, 315AGoogle Scholar
  112. 112.
    Matzner, Y., Gavison, R., Shlomai, Z., Ben-Bassat, H., Liebergal, M., Robinson, D. R. and Babior, B. M. (1986). Production of C5a antagonist by synovial and peritoneal tissue fibroblasts. J. Cell Physiol., 129, 215–20PubMedGoogle Scholar
  113. 113.
    Antommattei, O., Schumacher, H.R., Reginato, A.J. and Clayburne, G. (1984). Prospective study of morphology and phagocytosis of synovial fluid monosodium urate crystals in gouty arthritis. J. Rheumatol., 11, 741–9PubMedGoogle Scholar
  114. Higson, F. H. and Jones, O.T. G. (1984). Oxygen radical production by horse and pig neutrophils induced by a range of crystals. J. Rheumatol., 11, 735–40PubMedGoogle Scholar
  115. 115.
    Abramson, S., Buyon, J., Shaddick, N., Berkman, R., Hopkins, P., Dalton, J., Weissmann, G. and Winchester, P. (1986). Surface expression of CR3 on neutrophils as a marker of disease activity in systemic lupus erythematosis (Abstr.). Clin. Res., 34, 614AGoogle Scholar
  116. 116.
    Fauci, A. S., Haynes, B. F. and Katz, P. (1978). The spectrum of vasculitis. Ann. Intern. Med., 89, 660–76PubMedGoogle Scholar
  117. 117.
    Christian, C. L. and Sergent, J. S. (1976). Vasculitis syndromes: clinical and experimental models. Am. J. Med., 61, 385–92PubMedGoogle Scholar
  118. 118.
    Leavitt, R.Y. and Fauci, A. S. (1986). Pulmonary vasculitis. Am. Rev. Resp. Dis., 134, 149–66PubMedGoogle Scholar
  119. 119.
    Ignarro, L.J. (1977). Glucocorticosteroid inhibition of nonphagocytic discharge of lysosomal enzymes from human neutrophils. Arthr. Rheum., 20, 73–83Google Scholar
  120. 120.
    Mikulikova, D. and Trnavsky, K. (1982). The effect of indomethacin and its ester on lysosomal enzyme release from polymorphonuclear leukocytes and intracellular levels of cAMP and cGMP after phagocytosis of urate crystals. Biochem. Pharmacol., 31, 460–3PubMedGoogle Scholar
  121. 121.
    Klempner, M.S. and Styrt, B. (1983). Alkalinizing the intralysosomal pH inhibits degranulation of human neutrophils. J. Clin. Invest., 72, 1793–800PubMedGoogle Scholar
  122. 122.
    Muikulikova, D. and Trnavsky, K. (1980). Effect of levamisole on lysosomal enzyme release from polymorphonuclear leukocytes and intracellular levels of cAMP and cGMP after phagocytosis of monosodium urate crystals. Agents Actions, 10, 374–7Google Scholar
  123. 123.
    Welch, W. D. and Devlin, P. (1983). Hydrocortisone sodium succinate reversibly inhibits human neutrophil oxidative activity at clinically relevant concentrations. Chem. Biol. Interact., 43, 239–44PubMedGoogle Scholar
  124. 124.
    van Dyke, D., Peden, D., van Dyke C., Jones, G., Castronova, V and May, J. (1982). Inhibition by nonsteroidal anti-inflammatory drugs of luminol-dependent human- granulocyte chemiluminescence and [3H]FMLP binding. Inflammation, 6, 113–25PubMedGoogle Scholar
  125. 125.
    Styrt, B. and Klempner, M. S. (1986). Inhibition of neutrophil oxidative metabolism by lysosomotropic weak bases. Blood, 67, 334–42PubMedGoogle Scholar
  126. 126.
    Minta, J. O. and Williams, M.D. (1985). Some nonsteroidal anti-inflammatory drugs inhibit the generation of superoxide anions by activated polymorphs by blocking ligand- receptor interactions. J. Rheumatol., 12, 751–7PubMedGoogle Scholar
  127. 127.
    Styrt, B., Rocklin, R. E. and Klempner, M. S. (1985). Inhibition of neutrophil superoxide production by fanetizole. Inflammation, 9, 233–44PubMedGoogle Scholar
  128. 128.
    Abramson, S., Edelson, H., Kaplan, H., Given, W. and Weissman, G. (1984). The inactivation of the polymorphonuclear leukocyte by non-steroidal anti-inflammatory drugs. Inflammation, 8, S103-S108PubMedGoogle Scholar
  129. 129.
    Roots, R. and Okada, S. (1972). Protection of DNA molecules of cultured mammalian cells from radiation-induced single-strand scissions by various alcohols and SH compounds. Int. J. Radiat. Biol., 21, 329–42Google Scholar
  130. 130.
    Weitzman, S. A. and Stossel, T. P. (1981). Mutation caused by human phagocytes. Science, 212, 546–7PubMedGoogle Scholar
  131. 131.
    Weitberg, A.B., Weitzman, S.A., Destrempis, M., Latt, S.A. and Stossel, T.P. (1983). Stimulated human phagocytes produce cytogenetic changes in cultured mammaliam cells. N. Engl. J. Med., 308, 26–30PubMedGoogle Scholar
  132. 132.
    Birnboim, H. C. and Biggar, W. D. (1982). Failure of phorbol myristate acetate to damage DNA in leukocytes from patients with chronic granulomatous disease. Infect. Immun., 38, 1299–300PubMedGoogle Scholar
  133. 133.
    Weitberg, A. B. and Calabresi, P. (1986). Chloramine-induced sister chromatid exchanges (Abstr.). Clin. Res., 34, 665AGoogle Scholar
  134. 134.
    Morgenstern, R., Pero, R. W. and Miller, D. G. (1986). Induction of unscheduled DNA synthesis in human mononuclear leukocytes by oxidative stress. Adv. Exp. Med. Biol., 197, 819–23PubMedGoogle Scholar
  135. 135.
    Trush, M. A., Kensler, T. W. and Seed, J. L. (1986). Activation of xenobiotics by human polymorphonuclear leukocytes via reactive oxygen-dependent reactions. Adv. Exp. Med. Biol., 195A, 311–21Google Scholar
  136. 136.
    Weitzman, S.A., Weitberg, A.B., Clark, E.P. and Stossel, T.P. (1985). Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science, 227, 1231–3PubMedGoogle Scholar
  137. 137.
    Celada, A. and Schreiber, R. D. (1986). Role of protein kinase C and intracellular calcium mobilization in the induction of macrophage tumoricidal activity by interferon-alpha. J. Immunol., 137, 2373–9PubMedGoogle Scholar
  138. 138.
    Gorecka-Tisera, A.M. and McCulloch, M.A. (1986). Extracellular calcium is not an absolute requirement for tumoricidal activity of RAW-264 macrophage-like cell line. J. Leukocyte Biol., 40, 203–14PubMedGoogle Scholar
  139. 139.
    Drysdale, B.E., Yapundich, R.A., Shin, M.L. and Shin, H.S. (1987). Lipo- polysaccharide-mediated macrophage activation: the role of calcium in the generation of tumoricidal activity. J. Immunol., 138, 951–6PubMedGoogle Scholar
  140. 140.
    Ting, C.C., Yang, S. S. and Hargrove, M.E. (1986). Lymphokine-induced cytotoxicity: characterization of effects, precursors, and regulatory ancillary cells. Cancer Res., 46, 513–18PubMedGoogle Scholar
  141. 141.
    Seim, S. and Espevik, T. (1983). Toxic oxygen species in monocyte-mediated antibody- dependent cytotoxicity. J. Reticuloendothel. Soc., 33, 417–28PubMedGoogle Scholar
  142. 142.
    Chen, A. R. and Koren, H.S. (1985). Impaired oxidative burst does not affect human monocyte tumoricidal activity. J. Immunol., 134, 1909–13PubMedGoogle Scholar
  143. 143.
    Dallegri, F., Frumento, G. and Patrone, F. (1983). Mechanisms of tumor cell destruction by PMA-activated human neutrophils. Immunology, 48, 213–9Google Scholar
  144. 144.
    Lichtenstein, A. and Kahle, J. (1985). Anti-tumor effect of inflammatory neutrophils: characteristics of in vivo generation and in vitro tumor cell lysis. Int. J. Cancer, 35, 121–7PubMedGoogle Scholar
  145. 145.
    Lichtenstein, A. (1986). Spontaneous tumor cytolysis mediated by inflammatory neutrophils: dependence upon divalent cations and reduced oxygen intermediates. Blood, 67, 657–65PubMedGoogle Scholar
  146. 146.
    O’Donnell-Tormey, J., de Boer, C.J. and Nathan, C. F. (1985). Resistance of human tumor cells in vitro to oxidative cytolysis. J. Clin. Invest., 76, 80–6PubMedGoogle Scholar
  147. 147.
    Caignard, A., Lagadec, P., Reisser, D., Jeannin, J. F., Martin, M. S. and Martin, F. (1985). Role of macrophage in the defence against intestinal cancers. Comp. Immun. Microbiol. Infect. Dis., 8, 147–57Google Scholar
  148. 148.
    Decker, T., Lohmann-Matthes, M.L. and Gifford, G. E. (1987). Cell-associated tumor necrosis factor (TNF) as a killing mechanism of activated cytotoxic macrophages. J. Immunol, 138, 957–62PubMedGoogle Scholar
  149. 149.
    Morikawa, K., Hosokawa, M., Hamada, J., Xu, Z. and Kobiyashi, H. (1986). Possible participation of tumoricidal macrophages in the therapeutic effect of bleomycin on a transplantable rat fibrosarcoma. Cancer Res., 46, 684–8PubMedGoogle Scholar
  150. 150.
    Wang, B.S., Lumanglas, A. L. and Durr, F. E. (1986). Immunotherapy of a murine lymphoma by adoptive transfer of syngeneic macrophages activated with bisantrene. Cancer Res., 46, 503–6PubMedGoogle Scholar
  151. 151.
    Stoychkov, J. N., Schultz, R. M., Chirigos, M. A., Pavlidis, N. A. and Goldin, A. (1979). Effects of adriamycin and cyclophosphamide treatment on induction of macrophage cytotoxic function in mice. Cancer Res., 39, 3014–17PubMedGoogle Scholar
  152. 152.
    Warren, J. S. and Ward, P. A. (1986). Oxidative injury to the vascular endothelium. Am. J. Med. Sci., 292, 97–103PubMedGoogle Scholar
  153. 153.
    Movat, H.Z. and Wasi, S. (1985). Severe microvascular injury induced by lysosomal releasates of human polymorphonuclear leukocytes. Am. J. Pathol., 121, 404–17PubMedGoogle Scholar
  154. 154.
    Martin, W.J., II. (1984). Neutrophils kill pulmonary endothelial cells by a hydrogen peroxide-dependent pathway. Am. Rev. Resp. Dis., 130, 209–13PubMedGoogle Scholar
  155. 155.
    Ayer, A. and Gordon, J. L. (1984). Differential effects of hydrogen peroxide on indices of endothelial cell function. J. Exp. Med., 159, 592–603Google Scholar
  156. 156.
    Smedly, L. A., Tonneson, M. G., Sandhaus, R. A., Haslett, C., Guthrie, L. A., Johnston, R.B., Jr., Henson, P.M. and Worthen, G. S. (1986). Neutrophil-mediated injury to endothelial cells. J. Clin. Invest., 77, 1233–43PubMedGoogle Scholar
  157. 157.
    Dobrina, A. and Patriarca, P. (1986). Neutrophil-endothelial cell interaction. J. Clin. Invest., 78, 462–71PubMedGoogle Scholar
  158. 158.
    Cronstein, B.N., Levin, R.I., Belanoff, J., Weissmann, G. and Hirschhorn, R. (1986). Adenosine: an endogenous inhibitor of neutrophil-mediated injury to endothelial cells. J. Clin. Invest., 78, 760–70PubMedGoogle Scholar
  159. 159.
    Shingu, M., Yoshioka, K., Nobunaga, M. and Yoshida, K. (1985). Human vascular smooth muscle cells and endothelial cells lack catalase activity and are susceptible to hydrogen peroxide. Inflammation, 9, 309–20PubMedGoogle Scholar
  160. 160.
    Ross, R. (1986). The pathogenesis of atherosclerosis - an update. N. Engl. J. Med., 314, 488–500PubMedGoogle Scholar
  161. 161.
    Faggiotto, A., Ross, R. and Harker, L. (1984). Studies of hypercholesterolemia in the nonhuman primate. Arteriosclerosis, 4, 323–40PubMedGoogle Scholar
  162. 162.
    Cathcart, M.K., Morel, D.W. and Chisholm, G.M., IV. (1985). Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic. J. Leukocyte Biol., 38, 341–50PubMedGoogle Scholar
  163. 163.
    Poole, J. C. F. and Florey, H.W. (1958). Changes in the endothelium of the aorta and the behavior of macrophages in experimental atheroma of rabbits. J. Pathol. Bacteriol., 75, 245–51PubMedGoogle Scholar
  164. 164.
    Engler, R. L., Dahlgren, M.D., Peterson, M.A., Dobbs, A. and Schmid-Schoenbein, G. W. (1986). Accumulation of polymorphonuclear leukocytes during 3-h experimental myocardial ischemia. Am. J. Physiol., 251, H93-H100PubMedGoogle Scholar
  165. 165.
    Lucchesi, B. R., Mickelson, J. K., Homeister, J. W. and Jackson, C. V. (1987). Interaction of the formed elements of blood with the coronary vasculature in vivo. Fed. Proc., 46, 63–72PubMedGoogle Scholar
  166. 166.
    McCord, J. M. (1985). Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med., 312, 159–63PubMedGoogle Scholar
  167. 167.
    Weisfeldt, M. L. (1986). Reperfusion and reperfusion injury. Clin. Res., 34, 13–20Google Scholar
  168. 168.
    Lucchese, B. R. and Mullane, K. M. (1986). Leukocytes and ischemia-induced myocardial injury. Ann. Rev. Pharmacol. Toxicol., 26, 201–24Google Scholar
  169. 169.
    Zweier, J. L. and Weisfeldt, M. L. (1985). Direct observation of free radical production in the postischemic heart (Abstr.). Clin. Res., 33, 240AGoogle Scholar
  170. 170.
    Matthews, S. B. and Campbell, A. K. (1984). Neutrophil activation after myocardial infarction. (Letter to the editor). Lancet, 2, 756–7PubMedGoogle Scholar
  171. 171.
    Rowe, G. T., Eaton, L. R. and Hess, M. L. (1984). Neutrophil-derived, oxygen free radical- mediated cardiovascular dysfunction. J. Mol. Cell. Cardiol., 16, 1075–9PubMedGoogle Scholar
  172. 172.
    Soulsby, M.L., Jacobs, E.R., Perlmutter, B.H. and Bone, R.C. (1984). Protection of myocardial function during endotoxin shock by ibuprofen. Prostaglandins Leukotrienes Med., 13, 295–305Google Scholar
  173. 173.
    Bednar, M., Smith, B., Pinto, A. and Mullane, K. M. (1985). Nafazatrom-induced salvage of ischemic myocardium in anesthetized dogs is mediated through inhibition of neutrophil function. Circ. Res., 57, 131–41PubMedGoogle Scholar
  174. 174.
    Hansen, J. P. and Vanderlugt, J. T. (1984). Effect of ibuprofen on chemoattractant properties of cardiac lymph from infarcted dogs. (Abstr.). Fed. Proc., 43, 357Google Scholar
  175. 175.
    Niwa, Y. and Sohmiya, K. (1984). Enhanced neutrophilic functions in mucocutaneous lymph node syndrome, with special reference to the possible role of increased oxygen intermediate generation in the pathogenesis of coronary thromboarteritis. J. Pediatr., 104, 56–60PubMedGoogle Scholar
  176. 176.
    Cho, S. N., Brennan, P. J., Yoshimura, H. H., Korelitz, B. I. and Graham, D. Y. (1986). Mycobacterial aetiology of Crohn’s disease: serologic study using common mycobacterial antigens and a species-specific glycolipid antigen from Mycobacterium paratuberculosis. Gut. 27, 1353–6PubMedGoogle Scholar
  177. 177.
    Lyons, M.J., Amador, R., Petito, C., Nagashima, K., Weinreb, H. and Zabriskie, J. B. (1986). Inhibition of acute experimental allergic encephalomyelitis in mice by colchicine. J. Exp. Med., 164, 1803–8PubMedGoogle Scholar
  178. 178.
    Larsson, L. G. and Baum, J. (1985). Acute febrile neutrophilic dermatosis (Sweet’s syndrome). Successful treatment with short term corticosteroids. J. Rheumatol., 12,1000–3PubMedGoogle Scholar
  179. 179.
    Katz, S. I., Hall, R. P., III., Lawley, T. J. and Strober, W. (1980). Dermatitis herpetiformis: the skin and the gut. Ann. Intern. Med., 93, 857–74PubMedGoogle Scholar
  180. 180.
    Katz, S. I. and Strober, W. (1978). The pathogenesis of dermatitis herpetiformis. J. Invest. Dermatol., 70, 63–75PubMedGoogle Scholar
  181. 181.
    Katz, S.I., Gallin, J.I., Hertz, K.C., Fauci, A.S. and Lawley, T.J. (1977). Erythema elevatum diutinum: skin and systemic manifestations, immunologic studies, and successful treatment with dapsone. Medicine, 56, 443–55PubMedGoogle Scholar
  182. 182.
    Umbert, P. and Winkelmann, R. K. (1977). Histologic, ultrastructural, and histochemical studies of granuloma annulare. Arch. Dermatol., 113, 1681–6PubMedGoogle Scholar
  183. 183.
    Saied, N., Schwartz, R. A. and Estes, S. A. (1980). Treatment of generalized granuloma annulare with dapsone. (Letter). Arch. Dermatol., 116, 1345–6PubMedGoogle Scholar
  184. 184.
    Theron, A. and Anderson, R. (1985). Investigation of the protective effects of the antioxidants ascorbate, cysteine, and dapsone on the phagocyte-mediated oxidative inac- tivation of human alpha-1-protease inhibitor in vitro. Am. Rev. Resp. Dis., 132, 1049–54PubMedGoogle Scholar
  185. 185.
    Martin, W. J., II. and Kachel, D.L. (1985). Reduction of neutrophil-mediated injury to pulmonary endothelial cells by dapsone. Am. Rev. Resp. Dis., 131, 544–7PubMedGoogle Scholar
  186. 186.
    Hallett, M. B., Shandall, A. and Young, H. L. (1985). Mechanism of protection against ‘reperfusion injury’ by aprotinin. Biochem. Pharmacol., 34, 1757–61PubMedGoogle Scholar
  187. 187.
    Hermanowicz, A., Gibson, P. R. and Jewell, D. P. (1985). The role of phagocytes in inflammatory bowel disease. Clin. Sci., 69, 241–9PubMedGoogle Scholar
  188. 188.
    Ford-Hutchinson, A. (1984). Leukotriene involvement in pathologic processes. J. Allergy Clin. Immunol., 74, 437–40PubMedGoogle Scholar
  189. 189.
    Heidland, A., Horl, W. H., Heller, N., Heine, H., Neumann, S. and Heidbreder, E. (1982). Release of granulocyte neutral proteases in patients with acute and chronic renal failure. Adv. Exp. Med. Biol., 167, 417–31Google Scholar
  190. 190.
    Klempner, M. S., Gallin, J. I., Balow, J. E. and van Kämmen, D. P. (1980). The effect of hemodialysis and C5a des arg on neutrophil subpopulations. Blood, 55, 777–83PubMedGoogle Scholar
  191. 191.
    Chenoweth, D.E. (1986). Anaphylatoxin formation in extracorporeal circuits. Complement, 3, 152–65PubMedGoogle Scholar
  192. 192.
    Shah, S.V., Baricos, W.H. and Basci, A. (1987). Degradation of human glomerular basement membrane by stimulated neutrophils. J. Clin. Invest., 79, 25–31PubMedGoogle Scholar
  193. 193.
    Atkinson, J. P. and Frank, M.M. (1974). Studies on the in vivo effects of antibody. J. Clin. Invest., 54, 339–48PubMedGoogle Scholar
  194. 194.
    Kelton, J. G., Carter, C. J., Rodger, C., Bebenek, G., Gauldie, J., Sheridan, D., Kassam, Y. B., Kean, W. F., Buchanan, W. W., Rooney, P. J., Bianchi, F. and Denburg, J. (1984). The relationship among platelet-associated IgG, platelet lifespan, and reticuloendothelial cell function. Blood, 63, 1434–8PubMedGoogle Scholar
  195. 195.
    Hatherill, J. R., Till, G. O., Bruner, L. H. and Ward, P. A. (1986). Thermal injury, intravascular hemolysis, and toxic oxygen products. J. Clin. Invest., 78, 629–36PubMedGoogle Scholar
  196. 196.
    Maderazo, E. G., Woronick, C. L., Albano, S. D., Breaux, S. P. and Pock, R. M. (1986). Inappropriate activation, deactivation, and probable autooxidative damage as a mechanism of neutrophil locomotory defect in trauma. J. Infect. Dis., 154, 471PubMedGoogle Scholar
  197. 197.
    Edwards, J. E. Jr., Rotrosen, D., Fontaine, J. W., Haudenschild, C. C. and Diamond, R. D. (1987). Neutrophil-mediated protection of cultured human vascular endothelial cells from damage by growing Candida albicans hyphae. Blood, 69, 1450–7PubMedGoogle Scholar
  198. 198.
    Schreiber, A.D., Chien, P., Tomaski, A. and Cines, D.B. (1987). Effect of danazol in immune thrombocytopenic purpura. N. Engl. J. Med., 316, 503–8PubMedGoogle Scholar
  199. 199.
    Ahn, Y. S., Byrnes, J. J., Harrington, W. J., Cayer, M. L., Smith, D. S., Brunskill, D. E. and Pall, L. M. (1978). The treatment of idiopathic thrombocytopenia with vinblastine- loaded platelets. N. Engl. J. Med., 298, 1101–7PubMedGoogle Scholar
  200. 200.
    Sinha, S., Davies, J., Toner, N., Boyle, S. and Chiswick, M. (1987). Vitamin E supplementation reduces frequency of periventricular haemorrhage in very preterm babies. Lancet, 1, 466–70PubMedGoogle Scholar
  201. 201.
    Halliwell, B. and Grootveld, M. (1987). The measurement of free radical reactions in humans. FEBS Lett., 213, 9–14PubMedGoogle Scholar
  202. 202.
    Halliwell, B., Wasil, M. and Grootveld, M. (1987). Biologically significant scavenging of the myeloperoxidase-derived oxidant hypochlorous acid by ascorbic acid. FEBS Lett., 213, 15–18PubMedGoogle Scholar
  203. 203.
    Moorhouse, P. M., Grootveld, M., Halliwell, B., Quinlan, J. G. and Gutteridge, J. M. C. (1987). Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett., 213, 23–28 PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • B. Styrt

There are no affiliations available

Personalised recommendations