On the Fractal Nature of Collision Cascades

  • Yang-Tse Cheng
Part of the NATO ASI Series book series (NSSE, volume 155)

Abstract

Collision cascades induced by energetic ions are the origin of a variety of radiation effects in solids, such as those discussed in this Summer School. In this paper, a novel fractal geometry viewpoint of collision cascades is presented. The discussion is focused on the evolution of cascades to spikes.

Keywords

Fractal Dimension Fractal Geometry Fractal Dimensionality Collision Cascade Random Fractal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. B. Mandelbrot, The Fractal Geometry of Nature(W. H. Freeman and Company, New York, 1983).Google Scholar
  2. 2.
    S. H. Liu, Solid State Physics, Vol. 39, 207 (1986).CrossRefGoogle Scholar
  3. 3.
    On Growth and Form, edited by H. E. Stanley and N. Ostrowsky (Martinus Nijhoff, Boston, 1986).Google Scholar
  4. 4.
    B. J. West and A. L. Goldberger, American Scientist 75, 354 (1987).Google Scholar
  5. 5.
    Y.-T. Cheng, M-A. Nicolet, and W. L. Johnson, Phys. Rev. Lett. 58, 2083 (1987).CrossRefGoogle Scholar
  6. 6.
    K. B.Winterbon, H. M. Urbassek, P.Sigmund, and A.Gras-Marti, Phys.Scripta (in press).Google Scholar
  7. 7.
    Y.-T. Cheng, Mat. Res. Soc. Conf. Proc. 1987, Boston (in press).Google Scholar
  8. 8.
    F. Rossi, M. Nastassi, and D. M. Parkin, Mat. Res. Soc. Conf. Proc. 1987, Boston (in press).Google Scholar
  9. 9.
    See, e.g., K. B.Winterbon, Rad. Effects, 60, 199 (1982).CrossRefGoogle Scholar
  10. 10.
    K. B.Winterbon, P.Sigmund, and J. B. Sanders, Mat. Fys. Medd. Dan. Vid. Selsk. 37, 1 (1970).Google Scholar
  11. 11.
    B. B. Mandelbrot, in Fractals in Physics, Eds. L. Pietronero and E. Tosatti (North Holland, Amsterdam, 1986).Google Scholar
  12. 12.
    J. Lindhard, V. Nielsen, and M. Scharff, Kgl. Danske Videnskab. Selskab Mat.- Fys. Medd. 36, 10 (1968).Google Scholar
  13. 13.
    M. W. Thompson, Defects and Radiation Damage in Metals(Cambridge University Press, London, New York, 1969).Google Scholar
  14. 14.
    P.Sigmund, Phys. Rev. 184, 383 (1969).CrossRefGoogle Scholar
  15. 15.
    G. H. Kinchin and R. S. Pease, Rep. Prog. Phys. 18, 1 (1955).CrossRefGoogle Scholar
  16. 16.
    P.Sigmund, Appl.Phys. Lett. 14, 114 (1969).CrossRefGoogle Scholar
  17. 17.
    M. T. Robinson, Phil. Mag. 12, 741 (1965); 17, 639 (1968).Google Scholar
  18. 18.
    P.Sigmund, Appi. Phys. Lett. 25, 169 (1974); 27, 52 (1975).CrossRefGoogle Scholar
  19. 19.
    N. Bohr, Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 18, 1 (1948).Google Scholar
  20. 20.
    A. D.Marwick and P.Sigmund, Nucl. Instr. Meth. 126, 317 (1975).CrossRefGoogle Scholar
  21. 21.
    J. Vukanic and P.Sigmund, Appl. Phys. 11, 265 (1976).CrossRefGoogle Scholar
  22. 22.
    J. F. Ziegler, J. P.Biersack, and U. Littmark, The Stopping and Range of Ions in Solids Vol. 1 (Pergamon Press, New York, 1985).Google Scholar
  23. 23.
    This is true provided that, at the closest approach ρ nof the M-hard-spheres, the total potential energy can be written as f(M)1/ρ n1/m, where f(M)is some function of M.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Yang-Tse Cheng
    • 1
  1. 1.Physical Chemistry DepartmentGeneral Motors Research LaboratoriesWarrenUSA

Personalised recommendations