Computer Simulation of Ion-Beam Mixing of Cobalt on Silicon

  • Ivan Chakarov
  • D. S. Karpuzov
Part of the NATO ASI Series book series (NSSE, volume 155)

Abstract

Many theoretical works deal with recoil mixing of thin or thick Layers on a substrate [1,2,3,4]. These studies were carried out within the assumption of isotropic angular distribution of the moving low-energy cascade atoms. This is true if E ” Eo, where E is the initial energy of the primary ions and Eo amounts to between 10 and 100 eV [5]. In this case one can expect a maximum recoil mixing efficiency at the depth of maximum energy deposition by the primary ions, i.e. where FE (\(E,\vec{\Omega },\vec{r}\)) has its maximum [3,5]. There are also many experimental works which assess this suggestion [6,7,8].

Keywords

Momentum Distribution Function Surface Binding Energy Maximum Recoil Isotropic Angular Distribution Polycrystalline Target 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Littmark, Nucl. Instr. Meth. B7/8 (1985) 684Google Scholar
  2. 2.
    S. Dzioba and R. Kelly, J. Nucl. Mat. 76&77 (1978) 175CrossRefGoogle Scholar
  3. 3.
    P. Sigmund, Phys. Rev. 184 (1969) 383CrossRefGoogle Scholar
  4. 4.
    G. Fischer, G. Carter and R. Webb, Rad. Eff. 18 (1978) 41CrossRefGoogle Scholar
  5. P. Sigmund, Rev. Roum. Phys. 17 (1972) 823/969/1079Google Scholar
  6. 6.
    A. Grob, J.J. Grob, N. Nesli, D. Salles and P. Siffert, Nucl. Instr. Meth. 182/183 (1981) 85CrossRefGoogle Scholar
  7. 7.
    R. Grotzschel, R. Klabes, U. Kreisig and A. Schmidt, Rad. Eff. 36 (1978) 129CrossRefGoogle Scholar
  8. 8.
    MBruel, M. Floccari and J.P. Gailliard, Nucl. Instr. Meth.182/183 (1981) 93CrossRefGoogle Scholar
  9. 9.
    U. Littmark and P. Sigmund, J. Phys. D: Appi. Phys. 8, (1975) 241CrossRefGoogle Scholar
  10. 10.
    H.E. Roosendaal, U. Littmark and J.B. Sanders, Phys. Rev. B26 (1982) 5261Google Scholar
  11. 11.
    P. Sigmund, in: Sputtering by Particle Bombardment I, ed. R. Behrish (Springer, New York, 1981)Google Scholar
  12. 12.
    U. Littmark and W.O. Hofer, Nucl. Instr. Meth. 168 (1980) 329CrossRefGoogle Scholar
  13. 13.
    M.T. Robinson and I.M. Torrens, Phys. Rev. B9 (1974) 5008Google Scholar
  14. 14.
    M.T. Robinson, in: Sputtering by Particle Bombardment I, ed. R. Behrisch (Springer, New York, 1981)Google Scholar
  15. 15.
    K.B. Winterbon, Ion Implantation Range and Energy Deposition Distributions, Vol. 2, IFI/Plenum, N.Y. 1975Google Scholar
  16. 16.
    Cui Fu-Zhai and Li Heng-De, Nucl. Instr. Meth. B7/8 (1985) 650Google Scholar
  17. 17.
    P. Argyrokastritis, D.S. Karpuzov, J.S. Colligon, A.E. Hill and H. Kheyrandish, Phil. Mag. A49 (1984) 547Google Scholar
  18. 18.
    H.J. Whitlow and M. Hautala, Nucl. Instr. Meth. B18 (1987) 370Google Scholar
  19. 19.
    M. Hou, M.T. Robinson, Nucl. Instr. Meth. 132 (1976) 641CrossRefGoogle Scholar
  20. 20.
    M. Rosen, G.P. Mueller and W.A. Fräser, Nucl. Instr. Meth. 209/210 (1983) 63CrossRefGoogle Scholar
  21. 21.
    R. Kelly and A. Oliva, Nucl. Instr. Meth. B13 (1986) 283Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Ivan Chakarov
    • 1
  • D. S. Karpuzov
    • 1
  1. 1.Institute of ElectronicsBulg. Acad. Sci., Blvd.SofiaBulgaria

Personalised recommendations