Advertisement

Materials Production

  • R. Brunetaud
  • S. F. Pugh
  • D. J. Godfrey
  • J. F. G. Conde
  • F. Cambier
  • A. Leriche
  • R. Warren
  • T. G. Gooch
  • K. M. Ostyn
  • S. D. Peteves
  • A. G. Vinckier

Abstract

The production processes used in the preparation of superalloys for the highest temperature components of jet engines have in most respects been ahead of those used for other materials. This section on fabrication is derived largely from the technology of superalloy component manufacture. Much of the technology is transferrable to other materials and it seems likely that over the next decade much R and D in industry will be devoted to doing just that. Not everything is readily adapted. For example titanium is chemically extremely reactive and would pick up impurities from any crucible material. Both titanium and aluminium form impermeable oxide films making sintering of powder a very difficult process. Alloys currently favoured for HT Petrochemical processes are not readily formed either “cold or hot”. Nevertheless for all these and other HTMs there are some aspects of superalloy production which are being or could be adopted with benefit.

Keywords

Silicon Nitride Injection Moulding Fusion Welding Friction Welding Oxide Dispersion Strengthened 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

– From AGARD Congress Materials substitution and recycling 1983

  1. (1).
    New developments in recycling, Norton, R.C. and Keneham, O.B.Google Scholar
  2. (2).
    Effets des traitements sous vide sur devolution des teneurs en elements traces dans les superalliages, Wadier, J.P. and Morlet, J.Google Scholar

– From 7th ICVM Tokyo 1982

  1. (3).
    Production of ultra low nitrogen steels and alloys in vacuum induction, Katayman, H. and Nakamura, Y.Google Scholar
  2. (4).
    Metallurgical and plan design aspects of vacuum distillation processes, Ellebrecht, C.Google Scholar
  3. (5).
    Study of physiochemical processes in plasma arc remelting of the surface layer of ingots and billets, Latash, Y.V. et al.Google Scholar
  4. (6).
    Progress in the vacuum (VIM, VAR) melting of high performance alloys, Sutton, W.H.Google Scholar
  5. (7).
    New developments in electron-beam melting, Shiller, S. et al.Google Scholar

– From vacuum metallurgy conference 1984

  1. (8).
    Electron-beam cold hearth refining furnace for the production of nickel and cobalt base superalloys, Hunt, C.D.A. et al.Google Scholar
  2. (9).
    A mechanisms of white spot formation in remelted ingots, Wadice, J.F. et al.Google Scholar
  3. (10).
    Chemistry and structure control in remelted superalloys ingot, Cordy, J.T. et al.Google Scholar

– From High Temperature Alloys for Gas Turbines, Liege Meeting 1978, D. Coutsouradis et al. Applied Science Publishers London 1978

  1. (11).
    Quality of casting of superalloys, Bachelet, E. and Lesoult, G.Google Scholar
  2. (12).
    Progress in advanced directionally solidified and eutectic high temperature alloys, Drapier, J.M.Google Scholar

– From Superalloys 1980 Seven Springs meeting, Tien, J.K. et a l. American Society for Metal 1980

  1. (13).
    Thermomechanical processing of Haynes Alloy 1988 sheet to improve creep strength, Klarston, D.L.Google Scholar
  2. (14).
    The development of single crystal superalloy turbine blades, Gell, M. et al.Google Scholar
  3. (15).
    Development of low cost directionally solidified turbine blades, Hoppin, G.S. et al.Google Scholar
  4. (16).
    Influence of the chemical composition of nickel base superalloys on their solidification behaviour and foundry performance, Ouichou, L. et al.Google Scholar
  5. (17).
    The metallurgical aspects of hot isostatically pressed superalloy casting, Antony, K.C. adn Radavich, J.F.Google Scholar
  6. (18).
    Hiping various precision cast engine components in nickel base superalloys. Lamberigts, M. et al.Google Scholar

– From High Temperature Alloys for Gas Turbines, Liege. Meeting 1982, R. Brunetaud et al, D. Reidel Publishing Cy

  1. (19).
    Superalloy technology to-day and to-morrow, Versnijder, F.L.Google Scholar
  2. (20).
    VADER a new melting and casting technology, Boesh, W.J. et al.Google Scholar
  3. (21).
    The evolution of the forging process on discs, Coyne, J.E. and Couts Jr., W.H.Google Scholar
  4. (22).
    The relationship between structure, properties and processing in powder metallurgy superalloys, Davidson, J.H. and Aubin, C.Google Scholar
  5. (23).
    Precision casting of turbine blades and vanes, Drafner, J.M.Google Scholar
  6. (24).
    Microporosity formation in investment castings of nickel base superalloys: metallurgical effects, thermal modelling and foundry assessment, Ouichou, L. et al.Google Scholar

– From superalloys P4, Seven Springs meeting M. Gell et al. Metallurgical Society of AIME

  1. (25).
    Development of a conventional fine grain casting process, Would, M. and Benson, H.Google Scholar
  2. (26).
    Cost effective single crystals, Goulette, M.J. et al.Google Scholar
  3. (27).
    Superalloy powder processing, properties and turbine disc applications, Chang, D.R. et al.Google Scholar
  4. (28).
    Fabricated RSR vane manufacturing technology, Baker, S.H. et al.Google Scholar
  5. (29).
    Liquid phase sintering of nickel base superalloys, Jeandin, H. et al.Google Scholar
  6. (30).
    Superalloy melting and cleanliness evaluation, Shamblin, C.F.Google Scholar

– From High Temperature Alloys for Gas Turbines and other Applications, Liege Meeting 1986, W. Betz et al. D. Reidel Publishing Cy

  1. (31).
    Recent development and potential of single crystal superalloys for advance turbine blades, Khan, T.Google Scholar
  2. (32).
    Foundry performance and reverted alloys for turbine blades, Ford, D.A. et al.Google Scholar
  3. (33).
    Structure, processing of ODS superalloys, Singer, R and Artz, E.Google Scholar
  4. (34).
    Forging of high temperature alloys for gas turbines, Rydstad, H. et al.Google Scholar
  5. (35).
    Automated electron beam melting for superalloy cleanliness evaluation, Jarrett, R.N., Conference on Electron Beam Melting and Refining, Reno 1984, Bakish Materials Corporation.Google Scholar
  6. (36).
    Evaluation de la proprete des materiaux de metallurgie des poudres pour disques de turbomachines, Raison, G., Materiaux et techniques, decembre 1987.Google Scholar
  7. (37).
    Mechanical behaviour and processing of DS and single crystal superalloys, Khan, T. et al, Journal of Metals, July 1981.Google Scholar
  8. (38).
    Metal forming and the finite element method, past and future, Kobayaski, S., Advanced Technology of plasticity 19824, vol 2.Google Scholar
  9. (39).
    A general purpose KEM code for simulation of non isothermal forming processes, Wu, W.T. and Oly, S.I., NAMRC XIII Conference 1985.Google Scholar
  10. (40).
    Finite element analysis of shaped lead-tin disc forgings, Germain, Y. et al, NXJMIFORM Conference 1986.Google Scholar
  11. (41).
    Usinabilite des alliages refractaires, Vigneau, J., Rapport CETIM 1983.Google Scholar
  12. (42).
    Influence of the microstructure of the composite ceramics tools on their performance when machining superalloys, Vigneau, J., annals of CIR V 1987.Google Scholar
  1. 1.
    Annals of Occupational Hygiene, Okberg, 31., (4B), 529–545 pp. (1987)Google Scholar
  2. 2.
    Handbook of Composites Vol. 1, Birchall, J.D. et al. , Ed. Watt, W. and Perov, B.V., North Holland, 115–154 pp. (1985)Google Scholar
  3. 3.
    Communications Amer. Ceram. Soc., Prost, H.J. and Ray, R., C19 pp., Febr. (1982)Google Scholar
  4. 4.
    J. Amer. Ceram. Soc. 44, McGeary, R.K., (10), 513 pp. (1961)CrossRefGoogle Scholar
  5. 5.
    Special Ceramics, 1962, Long, W.M., Academic Press, London, 327 pp. (1963)Google Scholar
  6. 6.
    Bull. Am. Ceram. Soc. 60, Thompson, R.A., (2), 237 pp. (1981)Google Scholar
  7. 7.
    Bull. Am. Ceram. Soc. 61, Messing, C.L., et al, (8), 857 pp. (1982)Google Scholar
  8. 8.
    J. Am. Ceram. Soc. 60, Matsumoto R.L.K., (10), C216 pp. (1987)Google Scholar
  9. 9.
    J. Am. Ceram. Soc. 62, Strijbos, S., et al, (1), 57 pp. (1979)CrossRefGoogle Scholar
  10. 10.
    J. Am. Ceram. Soc. 64, DiMilia, R.A., (4), 667 pp. (1983)CrossRefGoogle Scholar
  11. 11.
    J. Am. Ceram. Soc. 67, Frey, R.G. and Halloran, J.W., (3), 199 pp. (1984)CrossRefGoogle Scholar
  12. 12.
    J. Am. Ceram. Soc. 66, DiMilia, R.A. and Reed, J.S., (9), 667 pp. (1983)CrossRefGoogle Scholar
  13. 13.
    Van Groenen and LissenburgGoogle Scholar
  14. 14.
    Bull. Am. Soc. 62, Sarkar, M. and Gremiger, G.K., (11), 1280 pp. (1983)Google Scholar
  15. 15.
    Bull. Am. Soc. 58, Salamone, A.L. and Reed, J.S., (6), 618 pp. (1971)Google Scholar
  16. 16.
    Powder Tech. 34, Krycer, I., et al. , 39 pp. (1983)CrossRefGoogle Scholar
  17. 17.
    Advances in Ceramics – Forming of Ceramics, Mikeska, K. and Cannon, W.R., Ed. Mangels, J.A., Am. Ceram. Soc., Columbus, Ohio, 164 pp. (1984)Google Scholar
  18. 18.
    Advance in Ceramics, Nies, C.W. and Messing, G.L., 58 pp.Google Scholar
  19. 19.
    Powder Tech., 44, Miller, T.A. and York, P., 219 pp. (1985)CrossRefGoogle Scholar
  20. 20.
    Bull. Enging. Exp. Stn., Jenike A.W., Utah 123 (1964)Google Scholar
  21. 21.
    Bull. Am. Ceram. Soc. 65, Schuetz, J.E., (12), 1556 pp. (1986)Google Scholar
  22. 22.
    Bull. Am. Ceram. Soc. 66, Gurak, M.R., et al. , (10), 1495 pp. (1987)Google Scholar
  23. 23.
    Ceram. Age, 82, Teter, A.R., (8), 30 pp. (1966)Google Scholar
  24. 24.
    Am. Ceram. Soc. 65, Evans, A.G., (10), 497 pp. (1982)CrossRefGoogle Scholar
  25. 25.
    Am. Ceram. Soc. 67, Lange, F., (2), 83 pp. (1984)CrossRefGoogle Scholar
  26. 26.
    Am. Ceram. Soc., Dynys, W. and Halloran, J.W., (4), 596 pp. (1984)Google Scholar
  27. 27.
    Bull. Am. Ceram. Soc. 65, Ciftcioghu, M., et al. , (12), 1591 pp. (1986)Google Scholar
  28. 28.
    Am. Ceram. Soc. 70, Ciftcioghu, M., et al. , (11), C329 pp. (1987)Google Scholar
  29. 29.
    Bull. Am. Ceram. Soc. 62, Mangels, J.A. and Williams, R.M., (5), 601 pp. (1983)Google Scholar
  30. 30.
    Bull. Am. Ceram. Soc. 61, Mizutas, U.C., et al. , (8), 872 pp. (1982)Google Scholar
  31. 31.
    J. Matl. Sci. 20, Parish, M.V., Garcia, R.R. and Bow, H.K., 996 pp. (1985)CrossRefGoogle Scholar
  32. 32.
    J. Am. Ceram. Soc. 68, Crosbie, G.M., (3), C83 pp. (1985)CrossRefGoogle Scholar
  33. 33.
    Bull. Am. Ceram. Soc. 62, Williams, R.M. and Ezis A., (5), 667 pp. (1982)Google Scholar
  34. 34.
    Bull. Am. Ceram. Soc. 63, Sacks, M.D., (12), 1510 pp. (1984)Google Scholar
  35. 35.
    J. Am. Ceram. Soc. 67, Williams, R.M., Ezis, A. and Coverly, J.C., (4), C64 pp. (1984)CrossRefGoogle Scholar
  36. 36.
    Silicon Nitride Based Ceramics: Fabrication, Processing and Properties; Research and Development Priorities, Davidge, R.W., Riley, F.L., Evans, D.C. and Wordsworth, R.A., AERER 12276, Commercial, CEC, JRC, Petten (May 1986)Google Scholar
  37. 37.
    Bull. Am. Ceram. Soc. 62, Mangels, J.A. and Williams, R.M., (5), 601 pp. (1983)Google Scholar
  38. 38.
    J. Matl. Sci. 12, Edirisinghe, M.J. and Evans, J.R.C., 269 pp. (1987)CrossRefGoogle Scholar
  39. 39.
    J. Am. Ceram. Soc. 66, Lange, F.F., (6), 396 pp. (1983)CrossRefGoogle Scholar
  40. 40.
    J. Am. Ceram. Soc. 66, Lange, F.F., (6), 402 pp. (1983)Google Scholar
  41. 41.
    J. Am. Ceram. Soc. 67, Lange, F.F., (2), 83 pp. (1984)CrossRefGoogle Scholar
  42. 42.
    J. Am. Ceram. Soc. 65, Evans, A.G., (10), 497 pp. (1982)CrossRefGoogle Scholar
  43. 43.
    J. Am. Ceram. Soc. 67, Dynys, F.W. and Halloran, J.W., (9), 59 pp. (1984)CrossRefGoogle Scholar
  44. 44.
    J. Am. Ceram. Soc. 67, Fegley, B., (6), C113 pp. (1984)CrossRefGoogle Scholar
  45. 45.
    J. Matl. Sci., 21, Ogihara, T., 2771 pp. (1986)CrossRefGoogle Scholar
  46. 46.
    Bull. Am. Ceram. Soc. 64, Johnson, D.W., (12), 1597 pp. (1985)Google Scholar
  47. 47.
    J. Am. Ceram. Soc. 65, Lange, F.F., (2), C23, 1982 and 66 pp., (2) C33 pp. (1983)CrossRefGoogle Scholar
  48. 48.
    J. Am. Ceram. Soc. 64, Singh, V.K., (10), C133 pp. (1981)CrossRefGoogle Scholar
  49. 49.
    J. Matl. Sci. Letters Meek, T.T. and Blake, R.D., 270–274 pp. (1986)Google Scholar
  50. 50.
    J. Mat. Sci. 22, Ziegler, G., et al. , 3041–3086 pp. (1987)CrossRefGoogle Scholar
  51. 51.
    Special Ceramics 5, Brown, R.L., et al. , Ed. Popper, P., BCRA, Stoke on Trent, 345–359 pp. (1972)Google Scholar
  52. 52.
    British Patent, Godfrey, D.J.Google Scholar
  53. 53.
    Proc. Brit. Ceramic Soc. 26, Godfrey, D.J., 265–278 pp. (1978)Google Scholar
  54. 54.
    Refractory Uses - Practicality of High Technology Ceramics, Fisher, G., Bull. Am. Ceram. Soc. 66, (7) (1987)Google Scholar
  55. 55.
    Recent Progress in the Use of Monolithic Refractories in Europe., Kuonert, W., Advances in Ceramics, 13, New Developments in Monolithic Refractories, Ed. Fisher, R.E., The Am. Ceram. Soc., Columbus, Ohio (1985)Google Scholar
  56. 56.
    Bull. Am. Ceram. Soc., 64, Leshkivich, C.J. and Crayton, P.M., 684–86 pp. (1985)Google Scholar
  57. 57.
    Bull. Am. Ceram. Soc. 64, McCoy, J.K., (9), 1240–49 pp. (1985)Google Scholar
  58. 58.
    Werkstofftech., JU, Ziegler, G., 189 pp. (1983)Google Scholar
  59. 59.
    Sci. Ceram. 11, Heinrich, J.J. and Bbhmer, M., 439 pp. (1981)Google Scholar
  60. 60.
    US Congress Office of Technology Assessment, OTA-TM-E-32, September (1986)Google Scholar
  61. 1.
    D.W. Johnson, Jr., “Non-conventional powder preparation techniques”, Am. Ceram. Soc. Bull., 60, (2), pp. 221–224, 243 (1981).Google Scholar
  62. 2.
    A. Kato, “Study on powder preparation in Japan”, Am. Ceram. Soc. Bull. 66 (4), pp. 647–649 (1987).Google Scholar
  63. 3.
    M.P. Harmer and R.J. Brook, “Fast Firing – Microstructural Benefits”, J. Brit. Ceram. Soc. 80 (5), pp. 147–148 (1981).Google Scholar
  64. 4.
    F. Cambier, “Raw materials available for conventional processing of engineering ceramics : alumina and silicon nitride powders”, Proc. Advanced Ceramics pp. 20–36, Ed. J.S. Moya and S. de Aza, Soc. Esp. Ceram. Vidr. Arganda del Rey - Madrid, Spain (1986).Google Scholar
  65. 5.
    F.F. Lange, “Sinterability of Agglomerated Powders”, J. Am. Ceram. Soc. 67 (2), pp. 83–89, 1984.CrossRefGoogle Scholar
  66. 6.
    A. Leriche, V. Vandeneede, D. Libert, F. Cambier, “Powder Characterization and Optimization of Fabrication and Processing of Silicon-based Engineering Ceramics”, Final Report Contract SUT 117-B (RS). Commission of the European Communities. Substitution and Materials Technologies and Ceramics. July 1986.Google Scholar
  67. 7.
    E. Rothman, J. Stitt and H.K. Bowen, “A Look at Ceramic Powder Production Processes – Old and New”, Ceramic Industry, pp. 24–29, May 1985.Google Scholar
  68. 8.
    “Synthesis of Ceramics by New Techniques” Special Issue of Yogyo-Kyokai-Shi, Vol. 95, N° 1, 1987.Google Scholar
  69. 9.
    “Production Process and Characteristics of High Purity Alumina”, S. Horikiri, pp. 23–31, F.C. Annual Report 1986, edited by Japan Fine Ceramics Association.Google Scholar
  70. (1).
    Kohler, W., Aluminium 51, 244–250 pp. (1975)Google Scholar
  71. (2).
    Renton, W.J., (editor), American Institute of Aeronautics and Astronautics, New YorkGoogle Scholar
  72. (3).
    Riewald, P.G., Kreuger, W.H. and Dhingra, A.K., US Patent 4,012,204 (1977)Google Scholar
  73. (4).
    Willis, T.C., White, J., Jordan, R.M. and Hughes, I.R., presented at Conf. on Solidification Processing held in Sheffield (1987)Google Scholar
  74. (5).
    Nair, S.V., Tien, J.K. and Bates, R.C., International Metals Reviews 30, 275–290 pp. (1985)Google Scholar
  75. (6).
    Mykura, N., presented at Institute of Metals Conference, Metal Matrix Composites: Structure & Property Assessment, London, November (1987)Google Scholar
  76. (7).
    Clyne, T.W., in Proc. Sixth International Conference on Composite Materials, Eds. Matthews et al, Elsevier Applied Science, London, vol. 2 (2)275-(2)286 pp. (1987)Google Scholar
  77. (8).
    Van Hille, D., Bengtsson, S. and Warren, R., submigged for publication in Composites Science and TechnologyGoogle Scholar
  78. (9).
    Winsa, E.A., Eds. Hack adn Amateau, Met. Soc. AIME., Warrendale, USA, 283–299 pp. (1983)Google Scholar
  79. (10).
    Warren, R., Larsson, L.O. and Garvare, T., Composites 10, 121–125 pp. (1979)CrossRefGoogle Scholar
  80. 1.
    Lundberg, R., Nyberg, B., Willander, K., Persson, M. and Carlsson, R., Composites, 18 (2) 125–127 pp. (1987)CrossRefGoogle Scholar
  81. 2.
    Inoue, S., Niihara, K., Uchiyama, T. and Hirai, T., Proc. Int. Conf. Ceramic Mater. Components for Engines, DKG, ed. Bunk., W. and Hausner, H., 609-617 (1986)Google Scholar
  82. 3.
    Clegg, W.J., Alford, N.McN. and Birchall, J.D., Proc. Int. Conf. Engineering with Ceramic, London, in press (1986)Google Scholar
  83. 4.
    Tiegs, T.N. and Becher, P.F., Am. Ceram. Soc. Bull., 66 (2), 339–342 pp. (1987)Google Scholar
  84. 5.
    Lundberg, R., Nyberg, B., Williander, K., Persson, M. and Carlsson, R., Proc. First Int. Conf. on HIP, Lulea, Sweden, June in press (1987)Google Scholar
  85. 6.
    Starr, T.L. and Harris, J.N., as ref. (2), 217-224 pp.Google Scholar
  86. 7.
    Pujai, V.K., Willkesn, C.A. and Corbin, N.D., presented at Am. Ceram. Soc. 89th Ann. Meet., abstr. 37-C-87 April (1987)Google Scholar
  87. 8.
    Nagel, A., Hoffman, J., Greil, P. and Petzow, G., as ref. (7), abstr. 38-C-87Google Scholar
  88. 9.
    Hoffmann, M.J., Greil, P. and Metzow, G., Proc. Int. Conf. Science of Ceramics 14, Canterbury, England, in press (1987)Google Scholar
  89. 10.
    Becher, D.F., Tiegs, T.N., Ogle, J.C. and Warwick, W.H., 4th Int. Symp. Fract. Mech. of Ceramics, Blacksburg, USA (1985)Google Scholar
  90. 11.
    Kageyama, K. and Chou, T.W., Proc. ICCM VI & ECCM 2, Elsevier, Ed. Matthews, F.L., et al. , 2.60-2.69 pp. (1987)Google Scholar
  91. 12.
    Cristin, F., Naslain, R. and Bernard, C., Proc. 7th Int. Conf. CVD, Ed. Sedwick, T.O. & Lydin, H., Electrochem. Soc., Princeton, USA, 499 pp. (1979)Google Scholar
  92. 13.
    Rossignol, J.Y., Quenisset, J.M. and Naslain, R., Composites, 18 (2) 135–144 pp. (1987)CrossRefGoogle Scholar
  93. 14.
    Walker, Jr., B.E., et al. , Am. Ceram. Soc. Bull., 62, (8), 916–923 pp. (1983)Google Scholar
  94. 15.
    Fizer, E. and Gadow, R., Am. Ceram. Soc. Bull., (2), 326–335 pp. (1986)Google Scholar
  95. 16.
    Pierre, A.C., Uhlmann, D.R. and Hordonneau, A., Rev. Int. Hautes Temp. Refract., 23, (1), 29–35 pp. (1986)Google Scholar
  96. 17.
    Fischbach, D.B. and MacLaren, D., NASA-Report, DOE ET 13389-T1 (1982)Google Scholar
  97. 18.
    Lundberg, R., Pompe, R. and Carlsson, R., As ref. 11, 2.33-2.39 pp. (1987)Google Scholar
  98. (1).
    Krlkke, R.H., Proc. Conf. “Behaviour of Joints in High Temperature Materials”, CEC, JRC Petten Establishment, Pub. Applied Science Publishers, UK, 1982, pp. 49-57?Google Scholar
  99. (2).
    Williams, J.A., idem, pp. 187-212.Google Scholar
  100. (3).
    Grunling, H.W. and Schneider, K., idem, pp. 5-43.Google Scholar
  101. (4).
    Jeal, R.H. and Gupta, S., Proc. Conf. “International Gas Turbine Congress”, Tokyo, Japan, Oct. 1987, pp. III-279-285.Google Scholar
  102. (5).
    “Metallurgy of Welding”, Lancaster, J.F., Allen & Unwin, London, 3rd Edition, (1980).Google Scholar
  103. (6).
    Davin, A. et al. , vide Ref. 1, pp. 87-110.Google Scholar
  104. (7).
    Shoemaker, L.E., Proc. Conf. “Advances in Welding Science & Technology”, ASM, Gatlinburg, USA, May 1986, pp. 371-377.Google Scholar
  105. (8).
    David, S.A. et al. , Weld. J., 65, 4, April 1986, pp. 93S–98S.Google Scholar
  106. (9).
    Christensen, J. and Sheward, G.E., vide Ref. 1, pp. 117-161.Google Scholar
  107. (10).
    Houlcroft, P.T., “Welding Processes”, Pub. Cambridge University Press, UK, (1967).Google Scholar
  108. (11).
    Cary, H. and Barhorst, S., vide Ref. 7, pp. 783-794.Google Scholar
  109. (12).
    Fidler, R., CEGB Report TPRD/M/1583/R86, Aug. 1986.Google Scholar
  110. (13).
    Ibid, CEGB Report TPRD/M/1558/R86, March 1986.Google Scholar
  111. (14).
    Gooch, R.G., vide Ref. 1, pp. 167-180.Google Scholar
  112. (15).
    Kelly, T.J., Proc. Conf. “Trends in Welding Research in the United States”, ASM, New Orleans, USA, Nov. 1981, pp. 471-485.Google Scholar
  113. (16).
    Santella, M. and David, S.A., Weld. J., 65, 5, May 1986, pp. 129S–137S.Google Scholar
  114. (17).
    Moore, T.J. and Glasgow, T.K., Weld J., 64, 8, Aug. 1985, pp. 219S–226S.Google Scholar
  115. (18).
    Spinat, R. and Honnorat, Y., Proc. Conf. “High Temperature Alloys for Gas Turbines and Other Applications”, Liege, Belgium, Oct. 1986, D. Reidel Publising Co, Holland, pp. 151.Google Scholar
  116. (19).
    Haufler, G. et al. , idem, pp. 8001.Google Scholar
  117. (20).
    Szekely, J., vide Ref. 7, pp. 3-14.Google Scholar
  118. (21).
    Goldak, J.A. et al. , Met. Trans. B., 15B, 2, June 1984, pp. 299–305.CrossRefGoogle Scholar
  119. (22).
    Alberry, P.J. et al. , Met. Tech., 1, Jan. 1983, pp. 28–38.Google Scholar
  120. (23).
    Duvall, D.S. et al. , Weld. J., 53, 4, April 1974, pp. 203S–214S.Google Scholar
  121. (24).
    Funamoto, T. et al. , Quart. J. Jap. Weld. Soc., 4, Nov. 1985, pp. 881–886.CrossRefGoogle Scholar
  122. (25).
    Jahnke, B. and Dannhauser, K., vide Ref. 18, pp. 175.Google Scholar
  123. (26).
    Bucklow, I.A., Annual Report No. 4, (1986), COST 501, Project UK5.Google Scholar
  124. (27).
    Anon, “Welding in Japan ’86”, Ed. Baba, A., Sampo Publications Inc., Japan, pp. 80-86.Google Scholar
  125. (28).
    Ibid, idem, pp. 22-28.Google Scholar
  126. (29).
    Derby, B. and Wallach, E.R., Met. Sci., 1, Jan. 1982, pp. 49–56.Google Scholar
  127. (30).
    Devletian, J.H., Weld. J., 66 6, June 1987, pp. 33–39.Google Scholar
  128. (31).
    Farrer, R.A., Proc. Conf. “Stainless Steels ’84”, Gotherburg, Sweden, (1984), Pub. Inst, of Metals, London, UK, pp. 336-342.Google Scholar
  129. (32).
    Lefebvre, J. et al. , idem, pp. 330-335.Google Scholar
  130. (33).
    Gooch, D.J. and Kimmins, S.T., Proc. Third Int. Conf. “Creep and Fracture of Engineering Materials and Structures”, Swansea, UK, April 1987, Inst, of Metals, pp. 689-703.Google Scholar
  131. (34).
    Williams, J.A., idem, pp. 721-740.Google Scholar
  132. (35).
    Nicholson, R.D. et al. , Proc. Conf. “Dissimilar Welds in Fossil-Fired Boilers”, New Orleans, USA, (1985), EPRI, CSD-3623.Google Scholar
  133. (36).
    Various, Proc. Conf. “Joining Dissimilar Metals”, EPRI, Pittsburg, USA, Aug. 1982.Google Scholar
  134. (37).
    Mizuhara, H. and Huebel, E., Weld. J., 65, Oct. 1986, pp. 43–51.Google Scholar
  135. (38).
    Nicholas, M.G., Brazing & Soldering, No. 10, Spring 1986, pp. 10.Google Scholar

Copyright information

© ECSC, EEC, EAEC, Brussels and Luxembourg 1989

Authors and Affiliations

  • R. Brunetaud
    • 1
  • S. F. Pugh
    • 2
  • D. J. Godfrey
    • 3
  • J. F. G. Conde
    • 4
  • F. Cambier
    • 5
  • A. Leriche
    • 5
  • R. Warren
    • 6
  • T. G. Gooch
    • 7
  • K. M. Ostyn
    • 8
  • S. D. Peteves
    • 10
  • A. G. Vinckier
    • 8
    • 9
  1. 1.ParisFrance
  2. 2.AbingdonUK
  3. 3.Admiralty Research EstablishmentHolton HeathEngland
  4. 4.BroadstoneEngland
  5. 5.Centre de Recherche de l’Industrie Belge de la CéramiqueMonsBelgium
  6. 6.Chalmers University of TechnologyGöteborgSweden
  7. 7.The Welding InstituteAbington, CambridgeUK
  8. 8.Research Center of the Belgian Welding InstituteGhentBelgium
  9. 9.State UniversityGhentBelgium
  10. 10.Joint Research Centre Petten EstablishmentPettenThe Netherlands

Personalised recommendations