Zirconia’88 pp 325-335 | Cite as

Microstructure Development During Sintering of Ultra Fine Grained Y-TZP

  • G. S. A. M. Theunissen
  • A. J. A. Winnubst
  • W. F. M. Groot Zevert
  • A. J. Burggraaf

Abstract

Ultra-fine grained, weakly agglomerated Y2O3 doped tetragonal ZrO2 powders with a primary particle size of about 8 nm were prepared by means of two different hydrous-gel precipitation techniques. These methods are respectively the hydrolysis of a metal alkoxide (“alkoxide” method) or a metal chloride (“chloride” method) solution. The sintering behaviour of these powders is compared with a commercial powder (Tosoh TZ3Y). After isostatic compaction at 400 MPa the chloride, alkoxide and TZ3Y compacts densify to 97% relative density after 10 hours sintering at 1050, 1200 and 1100°C respectively. The change in crystallite size and pore morphology has been studied as function of time. The sintering kinetics are probably determined by the aggregate structure within the green compact which is different for the investigated powders. A nanoscale ceramic can be obtained (grain size 53 nm) by sintering a chloride compact during 6.5 hr at 1044°C.

Keywords

Pore Radius Metal Chloride Primary Particle Size Sinter Behaviour American Ceramic Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Claussen, in “Science and Technology of Zirconia II” ed. by N. Claussen, M. Rühle and A.H. Heuer (American Ceramic Society, Columbus, Ohio, 1984) p. 325.Google Scholar
  2. 2.
    F.F. Lange, J. Mater. Sci., 17 (1982) 240.CrossRefGoogle Scholar
  3. 3.
    A.J.A. Winnubst, A.J. Burggraaf, to be published in Advances in Ceramics vol. 24, Science and Technology of Zirconia III, The American Ceramic Society, Inc. (Columbus, Ohio) 1988.Google Scholar
  4. 4.
    T. Sato, S. Shimada, J. Am. Ceram. Soc., 68 (1985) 356.CrossRefGoogle Scholar
  5. 5.
    W.H. Rhodes, J. Am. Ceram. Soc. 64 (1981) 19.CrossRefGoogle Scholar
  6. 6.
    A.J.A. Winnubst, G.S.A.M. Theunissen, W.F.M. Groot Zevert, A.J. Burggraaf in “Science of Ceramics 14” edited by D. Taylor, The Institute of Ceramics, Shelton, Stoke-on-Trent, Staffs., UK (1988) pp. 309–314.Google Scholar
  7. 7.
    M.A.C.G. van de Graaf, J.H.H. ter Maat, A.J. Burggraaf, J. Mat. Sci. 20 (1985) 1407–1418.CrossRefGoogle Scholar
  8. 8.
    W.F.M. Groot Zevert, A.J.A. Winnnubst, G.S.A.M. Theunissen, A.J. Burggraaf, submitted for publication in J. Mat. Sci.Google Scholar
  9. 9.
    M.A.C.G. Van De Graaf, A.J. Burggraaf, Adv.Ceram. 12 (1984) 744.Google Scholar
  10. 10.
    R. Pampueh, K. Haberko, Mat. Sci. Mon. 16 (1983) 623.Google Scholar
  11. 11.
    T. Kosmac, V. Krasevec, R. Gopalakrishnan, M. Komae, in Advances in Ceramics vol. 24, Science and Technology of Zirconia III, The American Ceramic Society, Inc. (Columbus, Ohio) 1988.Google Scholar
  12. 12.
    B. Kellett, F.F. Lange, J. Am. Ceram. Soc. 67 (1984) 369.CrossRefGoogle Scholar
  13. 13.
    W.F. Dynys, J.W. Halloran, J. Am. Ceram. Soc. 67 (1984) 596.CrossRefGoogle Scholar
  14. 14.
    A.J. Lecloux, P. Verleye, J. Bronckart, F. Noville, P. Marchot, J.P. Pirard, Reactivity of Solids 4 (1988) 309.CrossRefGoogle Scholar
  15. 15.
    P.D.L. Mercera, J.G. van Ommen, E.B.M. Doesburg, A.J. Burggraaf, J.R.H. Ross, Proceedings of Symposium on Advanced Ceramics, 19,20 December 1988, (London), to be published in “Britisch Ceramic Proceedings” the Institute of Ceramics (Stoke-on-Trent).Google Scholar
  16. 16.
    Dollimore, G.R. Heal, J. Appl. Chem. 14 (1964) 109.CrossRefGoogle Scholar
  17. 17.
    K.P. Klug, L.E. Alexander, “X-ray Diffraction Procedures” (Wiley and Sons, New York, 1974).Google Scholar
  18. 18.
    M.I. Mendelson, J. Am. Ceram. Soc. 52 (1969) 443–446.CrossRefGoogle Scholar
  19. 19.
    M.A.C.G. Van de Graaf, T. van Dijk, M.A. de Jongh, A.J. Burggraaf, Sci. Ceram. 9 (1977) 75.Google Scholar
  20. 20.
    R.K. Iler, The Chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry, New York; Chichester [etc.]: Wiley, 1979.Google Scholar
  21. 21.
    R.J. Brook, Ceramic Fabrication Processes in “Treatise of Materials Science and Technology”, Vol. 9, edited by F.F.Y. Wang, (Academic Press, New York, 1976) pp. 331–364.Google Scholar
  22. 22.
    G.S.A.M. Theunissen, A.J.A. Winnubst, A.J. Burggraaf, “Segregation aspects in the ZrO2-Y2O3 ceramic system” accepted for publication in J. Mat. Sci. Letters.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • G. S. A. M. Theunissen
    • 1
  • A. J. A. Winnubst
    • 1
  • W. F. M. Groot Zevert
    • 1
  • A. J. Burggraaf
    • 1
  1. 1.Faculty of Chemical Technology, Lab. for Inorganic Chemistry, Materials Science and CatalysisUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations