Integration of Polymer Science and Technology?
Abstract
One of the aims of these Rolduc Conferences is to stimulate integration of/in Polymer Science and Technology. The organisers asked for a critical review of the present-day status of this integration. Using a number of examples, it will be shown that the goal is far from being reached; these examples will refer to fracture, yielding, curing-react ions, UV-degradation and finite-element calculations. It will appear that some essential knowledge, available from material science, physics, etc. or even from certain branches of polymer science is not effectively used in (other branches of) the polymer field. As a consequence, research projects are sometimes ineffective, too expensive, based on wrong or questionable assumptions, unworkable or even unneeded.
Keywords
Physical Aging Amorphous Polymer Theoretical Strength Inorganic Glass Cohesive Energy DensityPreview
Unable to display preview. Download preview PDF.
References
- 1.W. Flügge, “Viscoelasticity”, Springer, 1975.Google Scholar
- 2.W.N. Findley, J.S. Lai, K. Onaran, “Creep and Relaxation of non-linear viscoelastic materials”, North-Holland, 1976.Google Scholar
- 3.T. Alfrey, Qu. Appl. Math. 2 (1944), 113.Google Scholar
- 4.W.T. Read, J. Appl. Phys. 21 (1950), 671.CrossRefGoogle Scholar
- 5.M.A. Biot, J. Appl. Phys. 25 (1954), 1385.CrossRefGoogle Scholar
- 6.E.H. Lee, Qu. Appl. Math. 13 (1955), 183.Google Scholar
- 7.L.C.E. Struik, “Het tijdsafhankelijk gedrag van kunststoffen”, part of College Kunststoffen, Un. Twente, code nr. 135020. KRITNO publication nr. P 1/’88.Google Scholar
- 8.I.M. Ward, “Mechanical Properties of Solid Polymers”, Wiley, 1983, Chapter 9.Google Scholar
- 9.L.C.E. Struik, “Physical Aging of Amorphous Polymers and Other Materials”, Elsevier, Amsterdam, 1978, Chapter 8.Google Scholar
- 10.L.C.E. Struik, “Physical Aging: Influence on the Deformation Behaviour of Amorphous Polymers”, in “Mechanical Failure of Plastics”, Brostow & Corneliussen, Eds., Hanser, Munnich-Vienna, 1986.Google Scholar
- 11.L.C.E. Struik, in “Kunststoffen 1986, Terugblik en Toekomst”, H.M. Brüggeman, Ed. published by KRITNO, 1986, page 280–281.Google Scholar
- 12.J.D.M. Wisse, book of Ref. 11, pp 203–210.Google Scholar
- 13.P. Vink, in “Developments in polymer stabilisation” - 3; Ed., G. Schott, Applied Science Publishers, Ltd., London, Chapter 4 (1980).Google Scholar
- 14.P. Vink and J.D.M. Wisse, Polymer Degradation and Stability, 4 (1982), 51–57.CrossRefGoogle Scholar
- 15.J.L. Bolland, Proc. Roy. Soc. (London), A 186 (1946) 218, Trans. Faraday Soc. 42 (1946) 236, 244; 43 (1947) 201; 44 (1948) 669; 45 (1949) 93; 46 (1950) 358.Google Scholar
- 16.D. Tabor, Proc. Roy. Soc (London) 192 (1947) 247.Google Scholar
- 17.C. Zwikker, “Physical Properties of Solid Materials”, Pergamon Press, London 1954.Google Scholar
- 18.J. Heijboer, “Technological Properties of hard methacrylate Polymers”, Central Laboratory TNO, Report no. CL 55/45; September 1955.Google Scholar
- 19.D.W. van Krevelen, “Properties of Polymers”, Elsevier, Amsterdam, 1976.Google Scholar
- 20.N. Brown, Mat. Sci. and Eng. 8 (1971), 69–73.CrossRefGoogle Scholar
- 21.F. Simon, Z. Anorg. Chemie 203 (1931), 219.CrossRefGoogle Scholar
- 22.H.R. Lillie, J. Amer. Ceram. Soc. 16 (1933), 619.CrossRefGoogle Scholar
- 23.
- 24.A.J. Kovacs, Thesis, Fac. Sci. Paris, France, 1954.Google Scholar
- 25.A.J. Kovacs, Fortschr. Hochpolym. Forschung, 3 (1964) 394.CrossRefGoogle Scholar
- 26.L.C.E. Struik, “Physical Aging of Amorphous Polymers and other Materials”, Elsevier, Amsterdam, 1978.Google Scholar
- 27.L.C.E. Struik, Chapter 11 in “Failure of Plastics”, Brostow and Corneliussen, Eds., Hanser, Munnich-Vienna, 1986.Google Scholar
- 28.L.C.E. Struik, “The mechanical behaviour and physical aging of semi-crystalline polymers”, Sequence of 4 papers in Polymer. Parts 1 and 2 have been published: Polymer 28 (1987) 1521, 1534. Parts 3 and 4 have been issued to Polymer. See also Plastics and Rubber Process, and Appl. 2 (1982) 41.CrossRefGoogle Scholar
- 29.L.C.E. Struik, “Aging-Physical” in the Mark-Bikales-Overberger-Menges “Encyclopedia of Polymer Science and Engineering”, Vol. 1, Second Ed., Wiley, New York, 1985.Google Scholar
- 30.L.C.E. Struik, “De Fysika van polymere materialen”, Oratie, Un. Twente, 22–01–1987.Google Scholar
- 31.D. Broek, “Elementary Engineering Fracture Mechanics”, Noordhoff, Leyden, 1974.Google Scholar
- 32.J.G. Williams, “Fracture Mechanics of Polymers”, Wiley, New York, 1984.Google Scholar
- 33.L.C.E. Struik, College Kunststoffen Code nr. 135020, Un. Twente, 1986–87.Google Scholar
- 34.A. H. Willbourn, Polymer 17 (1976) 965.CrossRefGoogle Scholar
- 35.
- 36.J.M. Crissman, A.E. Woodward and J.A. Sauer, J. Polym. Sci. A 3 (1965) 2693.Google Scholar
- 37.J.M. Crissman, J.A. Sauer and A.E. Woodward, J. Polym. Sci A 2 (1964) 5075.Google Scholar
- 38.J.M. Roe and E. Baer, Int. J. Polymeric Mat. (1972) 11.Google Scholar
- 39.J. A. Sauer and R.G. Saba, J. Macromol. Sci. (Chem.) A 3 (1969) 1217.CrossRefGoogle Scholar
- 40.N. Brown, Chapter 6 of the book of Ref. 27.Google Scholar
- 41.F. Kohlrausch, “Praktische Physik”, Bd 2, Table 16.Google Scholar
- 42.R. Buchdahl, J. Polym. Sci. 28 (1958) 239.CrossRefGoogle Scholar
- 43.A.V. Tobolsky, “Properties and Structure of Polymers”, Wiley, New York, 1960.Google Scholar