Microbial Production of Carotenoids other than β-Carotene

  • H. J. Nelis
  • A. P. De Leenheer

Abstract

The early discovery of carotenoids in living organisms is obviously attributable to the conspicuous appearance of these yellow, orange or red pigments. In 1831 Wackenroder prepared ‘carotene’ in crystalline form (Isler, 1971), whereas xanthophylls were first isolated from autumn leaves by Berzelius in 1837 (Isler, 1971). Following the main-classical chromatographic experiments of Tswett at the beginning of this century (Isler, 1971), it was soon realized that there existed a complex group of carotenoids in nature. The next decades indeed saw the isolation and structural elucidation of a large variety of new derivatives. More recently, the advent of modern spectrometric techniques and the refinement of separation methods have resulted in the ongoing discovery of more new structures, the determination of their absolute configurations and the establishment of routes for their partial or total synthesis. Concurrently, the biochemistry of carotenoids in plants and animals has gradually been unravelled (Goodwin, 1980, 1984).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrewes, A. G. & Starr, M. P. (1976). (3R, 3’R)-Astaxanthin from the yeast Phaffia rhodozyma. Phytochem., 15, 1009–11.CrossRefGoogle Scholar
  2. Andrewes, A. G., Phaff, H. J. & Starr, M. P. (1976). Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochem., 15, 1003–7.CrossRefGoogle Scholar
  3. Anonymous (1962). Algae—derived xanthophylls for pigmentation control. Feeds Illustrated, November issue, 24–25.Google Scholar
  4. Anonymous 1966–1967.Oxycarotenoid preparations. Microbiology Abstracts, Section A, 2, A1056.Google Scholar
  5. Anonymous (1969–1970a). Microbiological production of carotenoid—containing additives for animal feeds. Microbiology Abstracts, Section A, 5, A2001.Google Scholar
  6. Anonymous (1969–19706). Production of bacterial preparations with a high content of oxy-carotenoids. Microbiology Abstracts, Section A, 5, A2292.Google Scholar
  7. Arpin, N., Lebreton, J. & Fiasson, J.—L. (1966). Recherches chimiotaxinomiques sur les champignons. II. Les caroténoïdes de Peniophora aurantiaca (Bres.) (Basidiomycète). Bull. Soc. Mycol. France, 82, 450–59.Google Scholar
  8. Ascenzi, J. M. & Cooney, J. J. (1975). Action of visible light on enzymes in cell envelopes of Micrococcus roseus. Photochem. Photobiol., 21, 307–11.CrossRefGoogle Scholar
  9. Bamji, M. S. & Krinsky, N. I. (1966). The carotenoid pigments of a radiation—resistant Micrococcus species. Biochim. Biophys. Acta, 115, 276–84.Google Scholar
  10. Belter, P. A. (1979). General procedures for isolation of fermentation products. In Microbial Technology, Vol. II, 2nd edn, ed. H. J. Peppier & D. Perlman. Academic Press, New York, pp. 403–32. Bowles, N. D., Paerl, H. W. & Tucker, J. (1985). Effective solvents and extraction periods employed in phytoplankton carotenoid and chlorophyll determinations. Can. J. Fish. Aquat. Sei., 42, 1127–31.CrossRefGoogle Scholar
  11. Bowles, N. D., Paerl, H. W. & Tucker, J. (1985). Effective solvents and extraction periods employed in phytoplankton caroteniod and chlorophyll determinations. Can. J. Fish. Aquat. Sci., 42, 1127–31CrossRefGoogle Scholar
  12. Braumann, T. & Grimme, L. H. (1981). Reversed—phase high—performance liquid chromatography of chlorophylls and carotenoids. Biochim. Biophys. Acta, 637, 8–17.CrossRefGoogle Scholar
  13. Britton,G.(1985). General carotenoid methods. Meth. Enzym., 111, 113–49.CrossRefGoogle Scholar
  14. Brush, A. H. (1981). Carotenoids in wild and captive birds. In Carotenoids as Colorants and Vitamin A Precursors, ed. J. C. Bauernfeind. Academic Press, New York, pp. 539–62.Google Scholar
  15. Burnett,J. H.(1976). Functions of carotenoids other than in photosynthesis. In Chemistry and Biochemistry of Plant Pigments, Vol. 1, 2nd edn, ed. T. W. Goodwin. Academic Press, New York, pp. 655–79.Google Scholar
  16. Castillo, R., Nègre-Sadargues, G. & Lenel, R.(1982). General survey of the carotenoids Crustacea. In Carotenoid Chemistry and Biochemistry, ed. G. Britton & T. W. Goodwin. Pergamon Press, Oxford, pp. 211–24.Google Scholar
  17. Ciegler A.(1965). Microbial carotenogenesis. Adv. Appl. Microbiol., 7, 1–34.CrossRefGoogle Scholar
  18. Cooney, J. J. & Berry, R. A. (1981). Inhibition of carotenoid synthesis in Micrococcus roseus. Can. J. Microbiol., 27, 421–5.CrossRefGoogle Scholar
  19. Cooney, J. J., Marks, H. W. & Smith, A. M. (1966). Isolation and identification of canthaxanthin from Micrococcus roseus. J. Bacteriol., 92, 342–5.Google Scholar
  20. Costa, I.,Martelli,H. L.,da Silva, I. M. & Pomeroy, D.(1984). Producao de carotenoides por fermentacao. I. Producao de biomassa de Rhodotorula glutinis var.glutinis. Rev. Microbiol., Sao Paulo, 15, 109–13.Google Scholar
  21. Coty,V. F.(1968). Dialysis to improve cell growth. US patent 3,418,208. Cited in Proteins From Hydrocarbons, Food Technol. Rev., no. 4, ed. S. Gutcho. Noyes Data Corporation, Park Ridge, NJ, pp. 91–3, 1973.Google Scholar
  22. Czygan,F.–C.(1968). Sekundär—Carotinoide in Grünalgen. I. Chemie, Vorkommen und Faktoren welche die Bildung dieser Polyene beeinflussen. Arch. Mikrobiol., 61,81–102.CrossRefGoogle Scholar
  23. Davies, B. H.(1976). Carotenoids. In Chemistry and Biochemistry of Plant Pigments, Vol. 2, 2nd edn., ed. T. W. Goodwin. Academic Press, New York, pp. 38–165.Google Scholar
  24. Davis, J. B. (1967). Petroleum Microbiology. Elsevier, Amsterdam, pp. 311–15.Google Scholar
  25. Dieringer, S. M., Singer, J. T. & Cooney, J. J. (1977). Photokilling of Micrococcus roseus. Photochem. Photobiol., 26, 393–6.CrossRefGoogle Scholar
  26. Downs,J. & Harrison, D. E. F. (1974). Studies on the production of pink pigment in Pseudomonas extorquens NCIB 9399 growing in continuous culture. J. Appl. Bacteriol., 37, 65–74.CrossRefGoogle Scholar
  27. Driessens, K., Liessens, J., Masduki, S., Verstraete, W., Nelis, H. & De Leenheer, A. (1987). Production of Rhodobacter capsulatus ATCC 23782 with short residence time in a continuous flow photobioreactor. Process. Biochem., 22, 160–4.Google Scholar
  28. Dumenil, G., Läget, M., Crémieux, A., Millon, M. & Brousse, M. (1983). Etude des conditions de pigmentation d’une souche bactérienne méthylotrophe facultative. Ann. Pharm. Franc, 41, 427–35.Google Scholar
  29. Einsele,A.(1983),Biomass from higher n—alkanes. In Biotechnology, Vol. 3, ed. H. Dellweg. VCH, Weinheim, pp. 44–81.Google Scholar
  30. Einsele, A. & Fiechter, A. (1971). Liquid and solid hydrocarbons. Adv. Biochem. Eng., 1. 169–94CrossRefGoogle Scholar
  31. Gillan, F. T. & Johns, R. B.(1983). Normal-phase HPLC analysis of microbial carotenoids and neutral lipids. J. Chromatogr. Sci., 21, 34–8.Google Scholar
  32. Goodwin, T. W. (1972). Carotenoids in fungi and non-photosynthetic bacteria. Progr. Industr. Microbiol., 11, 29–88.Google Scholar
  33. Goodwin, T. W. (1980). The Biochemistry of the Carotenoids, Vol. I, Plants. Chapman & Hall, London.CrossRefGoogle Scholar
  34. Goodwin, T. W. (1984). The Biochemistry of the Carotenoids, Vol. II, Animals. Chapman & Hall, London.CrossRefGoogle Scholar
  35. Goodwin, T. W. & Jamikorn, M.(1956). Studies in carotenogenesis. 17. The carotenoids produced by different strains of Mycobacterium phlei.Biochem. J., 62, 269–81.Google Scholar
  36. Haas, H. F. & Bushneil, L. D. (1944). The production of carotenoid pigments frommineral oil by bacteria. J. Bacteriol., 48, 219–31.Google Scholar
  37. Haas, H. F., Yantzi, M. F. & Bushnell, L. D. (1941). Microbial utilization of hydrocarbons. Trans. Kansas Acad. Sci., 44, 39–45.CrossRefGoogle Scholar
  38. Hanson, A. M. (1967). Microbial production of pigments and vitamins. In Microbial Technology, ed. H. J. Peppier. Reinhold, New York, pp. 222–50.Google Scholar
  39. Haxo, F. (1950). Carotenoids of the mushroom Cantharellus cinnabarinus. Bot. Gaz.,111, 228–32.CrossRefGoogle Scholar
  40. Hochmannova, J., Kolmanova, A. & Malek, I. (1968). Comparison of pigments produced by several strains of Mycobacterium phlei. Fol. Microbiol., 13, 50–9.CrossRefGoogle Scholar
  41. Hsieh, L. K., Lee, T.-C, Chichester, C. O. & Simpson, K. L. (1974). Biosynthesis of carotenoids in Brevibacterium sp. KY—4313. J. Bacteriol., 118, 385–93.Google Scholar
  42. Hsu, W. J., Yokoyama, H. & Coggins, C. W. (1972). Carotenoid biosynthesis in Blakeslea trispora. Phytochem., 11, 2985–90.CrossRefGoogle Scholar
  43. Ida, K. (1981). Eco–physiological studies on the response of taxodiaceous conifers to shading, with special reference to the behaviour of leaf pigments. I. Distribution of carotenoids in green and autumnal reddish brown leaves of gymnosperms. Bot. Mag. (Tokyo), 94, 41–54.Google Scholar
  44. Iizuka, H. & Nishimura, Y. (1969). Microbiological studies on petroleum and natural gas. X. Carotenoid pigments of hydrocarbon utilizing bacteria. J. Gen. Appl. Microbiol., 15, 127–34.Google Scholar
  45. Imhoff, J. F., Trüper, H. G. & Pfennig, N. (1984). Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int. J. Syst. Bacteriol., 34, 340–43.CrossRefGoogle Scholar
  46. Ingraham, M. A. & Baumann, C. A. (1934). The relation of microorganisms to carotenoids and vitamin A. J. Bacteriol., 28, 31–40.Google Scholar
  47. Ingraham, M. A. & Steenbock, H. (1935). The relation of micro-organisms to carotenoids and vitamin A. II. The production of carotenoids by Mycobacterium phlei. Biochem. J., 29, 2553–62.Google Scholar
  48. Isler,O.(1971).Introduction.In Carotenoids,ed. O. Isler.Birkhäuser, Basle. Switzerland, p. 13.Google Scholar
  49. IUPAC Commission on the Nomenclature of Organic Chemistry and IUPAC-IUB Commission on Biochemical Nomenclature (1971). Tentative rules for the nomenclature of carotenoids. In Carotenoids, ed. O. Isler. Birkhäuser, Basle, Switzerland pp. 851–64.Google Scholar
  50. Johnson, E. A. & Lewis, M. J. (1979). Astaxanthin formation by the yeast Phaffia rhodozyma. J. Gen. Microbiol., 115, 173–83.Google Scholar
  51. Johnson, E. A., Conklin, D. E. & Lewis, M. J. (1977). The yeast Phaffia rhodozyma as a dietary pigment source for salmonids and crustaceans. J. Fish. Res. Board Can., 34, 2417–21.CrossRefGoogle Scholar
  52. Johnson, E. A., Villa, T. G., Lewis, M. J. & Phaff, H. J. (1978). Simple method for the isolation of astaxanthin from the Basidiomycetous yeast Phaffia rhodozyma. Appl. Environ. Microbiol., 35, 1155–59.Google Scholar
  53. Johnson, E. A., Villa, T. G. & Lewis, M. J. (1980a). Phaffia rhodozyma as an astaxanthin source in salmonid diets. Aquaculture, 20, 123–34.CrossRefGoogle Scholar
  54. Johnson, E. A.,Lewis, M. J. & Grau, C. R.(19806). Pigmentation of egg yolks with astaxanthin from the yeast Phaffia rhodozyma. Poultry Sci., 59, 1777–82.Google Scholar
  55. Katsuyama, T. & Matsuno, T. (1979). Isolation and identification of rhodoxanthin from the fish Tilapia nilotica. Bull. Jap. Soc. Scient. Fish., 45, 1045.Google Scholar
  56. Kester, A. S. & Thompson, R. E. (1984). Computer-optimized normal—phase high—performance liquid chromatographic separation of Corynebacterium poinsettiae carotenoids. J. Chromatogr., 310, 372–8.CrossRefGoogle Scholar
  57. Kläui, H.(1982).Industrial and commercial uses of carotenoids.In Carotenoid Chemistry and Biochemistry,ed. G. Britton & T. W. Goodwin, Pergamon Press, Oxford, pp. 308–17.Google Scholar
  58. Kläui,H. & Bauernfeind, J. C.(1981).Carotenoids as food colors.In Carotenoids as Food Colorants and Vitamin A Precursors, ed. J. C. Bauernfeind. Academic Press, New York, pp. 48–317Google Scholar
  59. Kobayashi, M. (1972). Utilization of photosynthetic bacteria. In Fermentation Technology Today (Proceedings of the IVth International Fermentation Symposium), ed. G. Terui, pp. 527–31.Google Scholar
  60. Kobayashi, M. & Kurata, S. (1978). The mass culture and cell utilization of photosynthetic bacteria. Process Biochem., 13, 27–30.Google Scholar
  61. Kobayashi, M. & Tchan, Y. T. (1973). Treatment of industrial waste solutions and production of useful by—products using a photosynthetic bacterial method. Water Res., 7, 1219–24.CrossRefGoogle Scholar
  62. Koronelli, T. V., Kalyuzhnaya, T. V. & Rozynov, B. V. (1981). Pigmented arctic mycobacteria and their role in the oxidation of hydrocarbons. Mikrobiologiya, 50, 167–70; Microbiology (English translation), 50, 123–5.Google Scholar
  63. Koronelli, T. V., Pahlavuni, I. K. & Rozynov, B. V. (1982). A pigmented amphiphilic biopolymer from marine mycobacteria. Mikrobiologiya, 51, 873–5.Google Scholar
  64. Koronelli, T. V., Pakhlavuni, I. K., Voroybyeva, I. A. & Balashov, S. P. (1987). The lipopeptidocarotenoid complex and cells of Rhodococcus maris studied by spectroscopy. Mikrobiologiya, 56, 890–91.Google Scholar
  65. Korthals, H. J. & Steenbergen, C. L. M. (1985). Separation and quantification of pigments from natural phototrophic microbial populations. FEMS Microbiol. Ecol., 31, 177–85.CrossRefGoogle Scholar
  66. Koyama, Y., Takii, T., Saiki, K. & Tsukida, K. (1983). Configuration of the carotenoid in the reaction centers of photosynthetic bacteria (2). Comparison of the resonance Raman lines of the reaction centers with those of 14 cis-trans isomers of ß—carotene. Photobiochem. Photobiophys. 3, 139–50.Google Scholar
  67. Krinsky, N. I. (1979). Carotenoid protection against oxidation. Pure Appl. Chem., 51, 649–60.CrossRefGoogle Scholar
  68. Lem, N. W. & Glick, B. R. (1985). Biotechnological uses of Cyanobacteria. Biotechnol. Adv., 3, 195–208.CrossRefGoogle Scholar
  69. Leuenberger, H. G. W. (1985). Microbiologically catalyzed reaction steps in the field of vitamin and carotenoid syntheses. In Biocatalysts in Organic Syntheses, ed. J. Tramper, H. C. van der Plas & P. Linko, Studies in Organic Chemistry, Vol. 22. Elsevier, Amsterdam, pp. 99–118.Google Scholar
  70. Levi, J. D., Shennan, J. L. & Ebbon, G. P. (1979). Biomass from liquid n-alkanes. In Economic Microbiology, Vol. 4, Microbial Biomass, ed. A. H. Rose, Academic Press, New York, pp. 361–419. Google Scholar
  71. Lewis, N. F. & Kumta, U. S. (1973). Lycopene accumulation in pigmented radioresistant Micrococci grown in presence of nicotine. FEBS Lett., 30, 144–6.CrossRefGoogle Scholar
  72. Liaaen-Jensen, S.(1978).Chemistry of carotenoid pigments. In The Photosynthetic Bacteria, ed. R. K. Clayton & W. R. Sistrom. Plenum Press, New York, pp. 233–47.Google Scholar
  73. Lichtheid, J. H.(1979). Production of single-cell protein for use in food and feed. In Microbial Technology, Vol. I, 2nd edn, ed. H. J. Peppier & D. Perlman. Academic Press, New York, pp. 93–155. Google Scholar
  74. Lichtfield, J. H. (1980). Microbial protein production. Bioscience, 30, 387–96.CrossRefGoogle Scholar
  75. Lichtfield, J. H. (1983). Single-cell proteins. Science, 219, 740–6.CrossRefGoogle Scholar
  76. McDermott, J. C. B., Ben-Aziz, A., Singh, R. K., Britton, G. & Goodwin, T. W.(1973). Recent studies of carotenoid biosynthesis in bacteria. Pure Appl. Chem., 35, 29–45.CrossRefGoogle Scholar
  77. Mantoura, R. F. C. & Llewellyn, C. A. (1983). The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta, 151, 297–314.CrossRefGoogle Scholar
  78. Mantoura, R. F. C. & Llewellyn, C. A. (1984). Trace enrichment of marine algal pigments for use with HPLC—diode array spectroscopy. J. High Resol. Chromatogr. & Chromatogr. Commun., 7, 632–5.CrossRefGoogle Scholar
  79. Margalith, P. & Meydav, S. (1968). Some observations on the carotenogenesis in the yeast Rhodotorula mucilaginosa. Phytochem., 7, 765–8.CrossRefGoogle Scholar
  80. Marusich, W. L. & Bauernfeind, J. C. (1981). Oxycarotenoids in poultry feed. In Carotenoids as Food Colorants and Vitamin A Precursors, ed. J. C. Bauernfeind. Academic Press, New York, pp. 319–462.Google Scholar
  81. Mathews, M. M. & Krinsky, N. I. (1965). The relationship between carotenoid pigments and resistance to radiation in non-photosynthetic bacteria. Photochem. Photobiol., 4, 813–17.CrossRefGoogle Scholar
  82. Mathews-Roth, M. M. & Krinsky, N. I. (1970). Studies on the protective function of the carotenoid pigments of Sarcina lutea. Photochem. Photobiol., 11, 419–28.CrossRefGoogle Scholar
  83. Mathews-Roth, M. M., Wilson, T., Fujimori, E. & Krinsky, N. I. (1974). Carotenoid chromophore length and protection against photosensitization. Photochem. Photobiol., 19, 217–22.CrossRefGoogle Scholar
  84. Mathis, P. & Schenck, C. C. (1982). The functions of carotenoids in photosynthesis. In Carotenoid Chemistry and Biochemistry, ed. G. Britton & T. W. Goodwin. Pergamon Press, Oxford, pp. 339–47.Google Scholar
  85. Mayer, H. (1979). Synthesis of optically active carotenoids and related compounds. Pure Appl. Chem., 51, 535–64.CrossRefGoogle Scholar
  86. Mayer, H. & Isler, O.(1971). Total syntheses. In Carotenoids, ed. O. Isler. Birkhäuser, Basel, pp. 325–575.Google Scholar
  87. Merritt, K. & Jacobs, N. J. (1978). Characterization and incidence of pigment production by human clinical group B—streptococci. J. Clin. Microbiol., 8, 105–7.Google Scholar
  88. Miller, J. C., George, S. A. & Willis, B. G. (1982). Multichannel detection in high-performance liquid chromatography. Science, 218, 241–6.CrossRefGoogle Scholar
  89. Moss, G. P. & Weedon, B. C. L.(1976). Chemistry of the carotenoids. In Chemistry and Biochemistry of Plant Pigments, Vol. 1, 2nd edn, ed. T. W. Goodwin. Academic Press, London, pp. 149–224.Google Scholar
  90. Müller, R. K., Bernhard, K. & Vecchi, M.(1982). Recent advances in the synthesis and analysis of 3,4-oxygenated xanthophylls. In Carotenoid Chemistry and Biochemistry, ed. G. Britton & T. W. Goodwin, Pergamon Press, Oxford, pp. 27–54.Google Scholar
  91. Nelis, H. J. C. F. & De Leenheer, A. P. (1983). Isocratic nonaqueous reversed-phase liquid chromatography of carotenoids. Anal. Chem., 55, 270–75.CrossRefGoogle Scholar
  92. Nelis, H. J. & De Leenheer, A. P. (1986). Carotenoid profiling and quantitation in biological materials using non-aqueous reversed phase chromatography and photo—diode array detection. Abstracts of the 10th International Symposium on Micro—chemical Techniques, Antwerp, 25–29 August, 1986, p. 133.Google Scholar
  93. Nelis, H. J. C. F. & De Leenheer, A. P. (1987). Exhaustive extraction, profiling and quantitation of bacterial carotenoids. Abstracts of the Sth International Symposium on Carotenoids, Boston, 27–31 July 1987, p. 9.Google Scholar
  94. Nesterenko, O. A.,Nogina, T. M., Kasumova, S. A., Kvasnikov, E. I. & Batrakov, S. G.(1982). Rhodococcus luteus nom. nov. and Rhodococcus maris nom. nov. Int. J. Syst. Bacteriol., 32, 1–14. CrossRefGoogle Scholar
  95. Ninet, L. & Renaut, J. (1979). Carotenoids. In Microbial Technology, 2nd edn, Vol. I, ed. H. J. Peppier & D. Perlman. Academic Press, New York, pp. 529–44. Ninet, L., Renaut, J. & Tissier, R. (1969). Activation of the biosynthesis of carotenoids by Blakeslea trispora. Biotechnol. Bioeng., 11, 1195–210.CrossRefGoogle Scholar
  96. Ninet, L., Renuat, J. & Tissier, R. (1969). Activation of the biosynthesis of caroteniod by Blakeslea trispora. Biotechnol. Bioeng. Lett., 5, 731–6.Google Scholar
  97. Okagbue, R. N. & Lewis, M. J. (1981). Mixed culture of Bacillus circulans WL-12 and Phaffia rhodozyma on different carbon sources: yeast—wall lytic enzyme production and extractability of astaxanthin. Biotechnol. Lett., 5, 731–6.CrossRefGoogle Scholar
  98. Okagbue, R. N. & Lewis, M. J. (1984a). Use of alfalfa residual juice as a substrate for propagation of the red yeast Phaffia rhodozyma. Appl. Microbiol. Biotechnol., 20, 33–39.Google Scholar
  99. Okagbue, R. N. & Lewis, M. J.(1984b).Inhibition of the red yeast Phaffia rhodozyma by saponin. Appl. Microbiol. Biotechnol., 20, 278–80.Google Scholar
  100. Okagbue, R. N. & Lewis, M. J. (1984c). Autolysis of the red yeast Phaffia rhodozyma: a potential tool to facilitate extraction of astaxanthin. Biotechnol. Lett., 6, 247–50.CrossRefGoogle Scholar
  101. Okagbue, R. N. & Lewis, M. J. (1985). Influence of mixed culture conditions on yeast–wall hydrolytic activity of Bacillus circulans WL-12 and on extractability of astaxanthin from the yeast Phaffia rhodozyma. J. Appl. Bacteriol, 59, 243–55.CrossRefGoogle Scholar
  102. Pachlavuni, I. K. (1987). A carotenoid—containing complex from Rhodococcus maris: some properties and structure. Abstracts of the 8th International Symposium on Carotenoids, Boston, 27–31 July, 1987, p. 12.Google Scholar
  103. Peterson, W. J., Evans, W. R., Lecce, E., Bell, T. A. & Etchells, J. L. (1958). Quantitative determination of the carotenoids in yeasts of the genus Rhodotorula. J. Bacteriol., 75, 586–91.Google Scholar
  104. Ratledge, C.(1970). Microbial conversions of n-alkanes to fatty acids: a new attempt to obtain economical microbial fats and fatty acids. Chem. Ind., 843–54.Google Scholar
  105. Ratledge, C. (1982). Microbial oils and fats: an assessment of their commercial potential. In Progress in Industrial Microbiology, Vol. 16, ed. M. J. Bull. Elsevier, Amsterdam, pp. 119–2.Google Scholar
  106. Rau,W.(1983). Photoregulation of carotenoid biosynthesis. In Biosynthesis of Isoprenoid Compounds, Vol. 2, ed. J. W. Porter & S. L. Spurgeon. Wiley, New York, pp. 123–57.Google Scholar
  107. Rüedi, P. (1985). HPLC—a powerful tool in carotenoid research. Pure Appl. Chem., 57, 793–3800.CrossRefGoogle Scholar
  108. Sakurai, H., Kato, K., Sakai, T., Masuda, Y. & Kuriyama, T. (1971). Studies on microbial utilization of petroleum. I. Separation and characterization of carotenoids produced by a species of Brevibacterium in hydrocarbon media. Bull. Chem. Soc. Japan, 44, 481–84.Google Scholar
  109. Saperstein, S., Starr, M. P. & Filfus, J. A. (1954). Alterations in carotenoid synthesis accompanying mutation in Corynebacterium michiganense. J. Gen. Microbiol., 10, 85–92.Google Scholar
  110. Sato, K., Ueda, S. & Shimizu, S. (1977). Form of vitamin B12 and its role in a methanol-utilizing bacterium, Protaminobacter ruber. Appl. Environ. Microbiol., 33, 515–21.Google Scholar
  111. Schlegel, H. G. (1959). Conversion of carotenoids to oxycarotenoids by Mycobacterium phlei. J. Bacteriol, 77, 310–16.Google Scholar
  112. Schmidt, K.1978).Biosynthesis of carotenoids. In The Photosynthetic Bacteria,ed. R. K. Clayton & W. R. Sistrom. Plenum Press,New York, pp. 729–50.Google Scholar
  113. Schwartzel, E. H. & Cooney, J. J. (1970). Isolation and identification of echinenone from Micrococcus roseus. J. Bacteriol, 104, 272–74.Google Scholar
  114. Schwartzel, E. H. & Cooney, J. J. (1972). Isolation of 4′-hydroxyechinenone from Micrococcus roseus. J. Bacteriol, 112, 1422–24.Google Scholar
  115. Schwartzel, E. H. & Cooney, J. J. (1974a). Action of light on Micrococcus roseus. Can. J. Microbiol, 20, 1015–21.CrossRefGoogle Scholar
  116. Schwartzel, E. H. & Cooney, J. J. (1974b). Isolation and characterization of pigmentation mutants of Micrococcus roseus. Can. J. Microbiol, 20, 1007–13. CrossRefGoogle Scholar
  117. Schwarz, Y. & Margalith, P. (1965). Production of egg yolk coloring material by a fermentation process. Appl. Microbiol., 13, 876–81.Google Scholar
  118. Seybold, A. & Goodwin, T. W. (1959). Occurrence of astaxanthin in the flower petals of Adonis annua L. Nature, Lond., 184, 1714–15.CrossRefGoogle Scholar
  119. Shapiro, A., DiLello, D., Loudis, M. C., Keller, D. E. & Hutner, S. H. (1977).Minimal requirements in defined media for improved growth of some radio-resistant pink tetracocci. Appl. Environ. Microbiol., 33, 1129–33.Google Scholar
  120. Shimizu, S., Sato, K., Hiraoka, M., Yamashita, F. & Kobayashi, T. (1982). Carotenoids formation by a facultative methylotroph, Protaminobacter ruber. J. Ferment. Technol., 60, 163–6.Google Scholar
  121. Shipman, R. H., Fan, L. T. & Kao, I. C. (1977). Single-cell protein production by photosynthetic bacteria. Adv. Appl. Microbiol., 21, 161–83.CrossRefGoogle Scholar
  122. Simpson, K. L.,Chichester, C. O. & Phaff, H. J (1971). Carotenoid pigments of yeasts. In The Yeasts, Vol. 2, ed. A. H. Rose & J. S. Harrison. Academic Press, New York, pp. 493–515.Google Scholar
  123. Simpson, K. L., Katayama, T. & Chichester, C. O. (1981). Carotenoids in fish feeds. In Carotenoids as Food Colorants and Vitamin A Precursors. Academic Press, New York, pp. 463–538.Google Scholar
  124. Spurgeon, S. L. & Porter, J. W. (1983). Biosynthesis of carotenoids. In Biosynthesis of Isoprenoid Compounds, Vol. 2, ed. J. W. Porter & S. L. Spurgeon. Wiley, New York, pp. 1–122.Google Scholar
  125. Tanaka,A.,Nagasaki, T., Inagawa, M. & Fukui, S. (1968a). Studies on the formation of vitamins and their functions in hydrocarbon fermentation. (V) Production of carotenoids by Mycobacterium smegmatis in hydrocarbon media (Part I). Studies on the cultural conditions. J. Ferm. Technol.,46, 468–76.Google Scholar
  126. Tanaka,A.,Nagasaki, T. & Fukui, S. (19686). Studies on the formation of vitamins and their functions in hydrocarbon fermentation. (VI) Production of carotenoids by Mycobacterium smegmatis in hydrocarbon media. (Part II) Isolation and characterization of several carotenoids produced by Mycobacterium smegmatis IFO-3080. J. Ferm. Technol., 46, 477–87.Google Scholar
  127. Tanaka,A., Kato, K. & Fukui, S. (1971). Studies on the formation of vitamins and their function in hydrocarbon fermentation. (IX) Production of carotenoids from hydrocarbons by Brevibacterium. J. Ferm. Technol., 49, 778–91.Google Scholar
  128. Taylor, R. F. (1980). Chromatography of carotenoids and retinoids. Adv. Chromatogr., 22, 157–213.Google Scholar
  129. Thériault, R. J. (1965). Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Appl. Microbiol., 13, 402–16.Google Scholar
  130. Toraya, T., Yongsmith, B., Tanaka, A. & Fukui, S. (1975). Vitamin B12 production by a methanol utilizing bacterium. Appl. Microbiol., 30, 477–9.Google Scholar
  131. Ungers, G. E. & Cooney, J. J. (1968). Isolation and characterization of carotenoid pigments of Micrococcus roseus. J. Bacteriol., 96, 234–41.Google Scholar
  132. Urakami, T., & Komagata, K. (1986). Occurrence of isoprenoid compounds in Gram—negative methanol—, methane— and methylamine—utilizing bacteria. J. Gen. Appl. Microbiol., 32, 317–41.CrossRefGoogle Scholar
  133. Valadon, L. R. G. (1976). Carotenoids as additional taxonomie characters in fungi: a review. Trans Br. My col. Soc, 67, 1–15.CrossRefGoogle Scholar
  134. Van Niel, C. B. & Smith, J. H. C. (1935). Studies on the pigments of the purple bacteria. Arch. Mikrobiol., 6, 219–29.CrossRefGoogle Scholar
  135. Various patents (1973). Recovery techniques. In Proteins From Hydrocarbons, Food Technology Review no. 4, ed. S. Gutcho. Noyes Data Corporation, Park Ridge, NJ, pp. 144–99.Google Scholar
  136. Villoutreix, J. (1960). Influence de divers agents chimiques sur la caroténogénèse de Rhodotorula mucilaginosa. Biochim. Biophys. Acta, 40, 434–41.CrossRefGoogle Scholar
  137. Voznyakovskaya, Y. M. & Daraseliya, G. Y. (1972). Mutants of Mycobacterium phlei with increased synthesis of carotenoids. Mikrobiologiya, 41, 886–90.Google Scholar
  138. Wendall, M., Farrow, F. & Tabenkin, B. (1964). Preparation of a lutein product. French patent 1,367,027. CA 62 (1965) 9742.Google Scholar
  139. Wood, J. F., Carter, P. M. & Savory, R. (1983). Investigation into the effect of processing on the retention of the carotenoid fractions of Leucaena Leucocephala during storage, and the effects of processing on mimosine concentration. Anim. Feed Sei. Technol., 9, 307–17.CrossRefGoogle Scholar
  140. Yamada, K., Nakahara, T. & Fukui, S. (1971). Petroleum microbiology and vitamin production. In Biochemical and Industrial Aspects of Fermentation, ed. K. Saka-guchi, T. Uemura & S. Kinoshita. Kodansha, Tokyo, pp. 61–90.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • H. J. Nelis
    • 1
  • A. P. De Leenheer
    • 1
  1. 1.Laboratories of Medical Biochemistry and Clinical AnalysisState University of GhentGhentBelgium

Personalised recommendations