Abstract

ATP plays a central role in energy metabolism as a carrier of chemical energy from catabolic reactions to anabolic reactions. It has two high-energy phosphate bonds which give a free energy of 14–16 kcal/mol on hydrolysis. Since ATP was first isolated in 1929 from a tissue (muscle) having high glycolysis activity, by Lohmann, and Fiske and Subbarow, the mechanism of its formation has been studied through elucidation of the mechanisms of the glycolytic pathway and the respiratory chain. Thus, ATP is an important chemical in biochemical research and medicine. Recently, ATP has also attracted much attention as the energy donor in bioreactors for the production of useful metabolites.

Keywords

Yeast Cell Phytic Acid Adenylate Kinase Methylotrophic Yeast Crude Enzyme Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asada, M., Yanamoto, K., Nakanishi, K., Matsuno, R., Kimura, A. & Kamikubo, T. (1981). Long term continuous ATP regeneration by enzymes of the alcohol fermentation pathway and kinases of yeast. Eur. J. Appl. Microbiol. Biotechnol., 12, 198–204.CrossRefGoogle Scholar
  2. Fujio, T. & Furuya, A. (1983). Production of ATP from adenine by Brevibacterium ammoniagenes. J. Ferment. Technol., 61, 261–7.Google Scholar
  3. Fujio, T. & Furuya, A. (1985). Effects of magnesium ion and chelating agents on enzymatic production of ATP from adenine. Appl. Microbiol. Biotechnol., 21,143–7.CrossRefGoogle Scholar
  4. Fukuda, Y., Yamaguchi, S., Hashimoto, H., Shimosaka, M. & Kimura, A. (1984). Cloning of glucose phosphorylation genes in S. cerevisiae by the KU-method and application to ATP production. Agric. Biol. Chem., 48, 2877–81.Google Scholar
  5. Kennedy, J. F. (Ed.) (1987). Enzyme Technology, Vol. 7A, Biotechnology, eds. H. J. Rehm & G. Reed. VCH, Weinheim, FRG.Google Scholar
  6. Kimura, A., Tatsutomi, Y., Fukuda, H. & Morioka, H. (1980). Effect of acriflavine on the hexokinase isozyme pattern of a yeast, Hansenula jadinii. Biochim. Biophys. Acta, 629, 217–24.Google Scholar
  7. Lutwak-Mann, C. & Mann, T. (1935). Über die Verkettung der chemischen Umsetzungen in der alkoholichen Gärung. I. Mitteilung: Bildung uns Spaltung der Adenosintriphosphorsäure und deren Zusammenhang mit den Vorgängen der Zuckerspaltung. Biochem. Z., 281, 140–56.Google Scholar
  8. Ostern, P., Baranowski, T. & Terszakowec, J. (1938). Über die Phosphorylierung des Adenosins durch Hefe und die Bedeutung dieses Borgangs für die alkoholische Gärung. II. Metteilung, Hoppe-SeyIer’s Z. Physiol. Chem., 251, 258–84.Google Scholar
  9. Shimosaka, N., Fukuda, Y. & Kimura, A. (1981). Application of plasmid to ATP production by E. coli. Agric. Biol. Chem., 45, 1025–7.Google Scholar
  10. Tanaka, A. & Hironaka, J. (1972). Studies on enzymatic production of ATP. Agric. Biol. Chem., 36, 867–9.CrossRefGoogle Scholar
  11. Tanaka, H., Sato, Z., Nakayama, K. & Kinoshita, S. (1968). Production of nucleic acid-related substances by fermentative processes. Part XV. Formation of ATP, GTP and their related substances by Brevibacterium ammoniagenes. Agric. Biol. Chem., 32, 721–6.Google Scholar
  12. Tani, Y. & Yonehara, T. (1985). ATP production from adenosine or adenine by a methanol-utilizing yeast. Candida boidinii (Kloeckera sp.) No. 2201. Agric. Biol. Chem., 49, 637–42.Google Scholar
  13. Tani, Y., Mitani, Y. & Yamada, H. (1982). Utilization of C1-compounds: phosphorylation of adenylate by oxidative phosphorylation in Candida boidinii (Kloeckera sp.) No. 2201. Agric. Biol. Chem., 46, 1097–9.Google Scholar
  14. Tani, Y., Mitani, Y. & Yamada, H. (1984a). ATP production by protoplasts of a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. Agric. Biol. Chem., 48, 431–7.Google Scholar
  15. Tani, Y., Mitani, Y. & Yamada, H. (1984b). Preparation of ATP-producing cells of a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. J. Ferment. Technol., 62, 99–101.Google Scholar
  16. Tani, Y., Yonehara, T., Mitani, Y. & Yamada, H. (1984c). ATP production by sorbitol-treated cells of a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201, J. Biotechnol., 1, 119–27.Google Scholar
  17. Tochikura, T., Kuwahara, M., Yagi, S., Okamoto, H., Tominaga, Y., Kano, T. & Ogata, K. (1967). Fermentation and metabolism of nucleic acid-related compounds in yeasts. J. Ferment. Technol., 45, 511–29.Google Scholar
  18. Vandamme, E. J., Vanloo, J., Machtelinckx, L. & De Laporte, E. (1987). Microbial sucrose Phosphorylase: fermentation process, properties and biotechnical applications. Adv. Appl. Microbiol, 32.Google Scholar
  19. Yamaguchi, S., Fukuda, Y., Shimosaka, M. & Kimura, A. (1984). Phosphorylation of AMP to ATP by dried Escherichia coli B cells, J. Ferment. Technol., 62, 29–33.Google Scholar
  20. Yonehara, T. & Tani, Y. (1986). Comparative studies on ATP production from adenosine by a methanol yeast. Agric. Biol. Chem., 50, 8 99–905.Google Scholar
  21. Yonehara, T. & Tani, Y. (1987). Highly efficient production of ATP by a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201. J. Ferment. Technol., 65, 255–60.Google Scholar
  22. Yonehara, T. & Tani, Y. (1988). ATP production by a methanol yeast, Candida boidinii (Kloeckera sp.) No. 2201: effects of sorbitol treatment and zinc on cell structure as to ATP production. Agric. Biol. Chem., 52, 909–14.Google Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • Y. Tani
    • 1
  1. 1.Research Center for Cell and Tissue CultureKyoto UniversityKyotoJapan

Personalised recommendations