Study of Non Stoichiometric Pure and Zr-Doped Yttria Surfaces by X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy

  • M. Gautier
  • J. P. Duraud
  • F. Jollet
  • N. Thromat
  • Ph. Maire
  • C. Le Gressus
Part of the NATO ASI Series book series (NSSE, volume 173)

Abstract

Surfaces of oxygen-deficient yttrium oxide, pure or Zr-doped, have been studied by means of X-ray photoelectron spectroscopy and scanning electron microscopy.

The bulk local geometric structure of these non-stoichiometric compounds was previously determined around the Y atom by an EXAFS (Extended X-ray absorption fine structure) study.

The local electronic structure around both Y and 0, at the surface, was investigated by X-ray photoelectron spectroscopy.

The partial transfer of the electronic distribution between the anion and the cation was probed using the Auger parameter.

Coupling of these experiments with microscopic observations show that :
  • In the pure oxygen-deficient sample, the concentration of oxygen vacancies appears to be increased at the grain boundaries.

  • The Auger parameter shows upon reduction an evolution of the Y-0 bond towards a more covalent one, this evolution being modulated with the presence of ZrO2.

Keywords

Oxygen Vacancy Secondary Electron Image Yttrium Oxide Anionic Vacancy Auger Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.R.A. Catlow, ‘Defect clustering in nonstoichiometric oxides’, in ‘Non stoichiometric oxides’, 61–98. ed. by 0. Toft Sorensen. Academic Press, New York (1981)Google Scholar
  2. 2.
    N.M. Tallan, R.W. Vest, ‘Electrical properties and defect structure of Y203’, J. Am. Ceram. Soc., 49 (8), 401–404 (1966)CrossRefGoogle Scholar
  3. 3.
    T. Norby, P. Kofstad,‘Direct Current Conductivity of Y203 as a function of water vapor pressure’, J. Am. Ceram. Soc., 69 (11) 780–783 (1986).CrossRefGoogle Scholar
  4. 4.
    T. Norby, P. Kofstad, ‘Electrical conductivity of Y203 as a function of oxygen partial pressure in wet and dry atmospheres’, J. Am. Ceram. Soc., 69 (11), 784–789 (1986)CrossRefGoogle Scholar
  5. 5.
    T. Norby, P. Kofstad, ’Proton and native-ion conductivities in Y203 at high temperatures’, Sol. Stat. Ionics, 20, 169–184 (1986)CrossRefGoogle Scholar
  6. 6.
    F. Jollet, Ph. Maire, M. Gautier, J.P. Duraud, C. Le Gressus, ’Influence of stoichiometry on the electrical and mechanical behavior of yttrium oxide ceramics’, J. Am. Ceram. Soc., 71, (9), C396–C398 (1988)CrossRefGoogle Scholar
  7. 7.
    H.L. Tuller,‘Thermodynamics and defect structure of non stoichiometric oxides’, in‘Non-Stoichiometric oxides’, 2–59, ed. by 0. Toft Sorensen, Academic Press, New York (1981)Google Scholar
  8. 8.
    M.G. SCOTT, ‘Phase relationships in the zirconia-yttria system’, J. of Materials Science, 10, 1527–1535 (1975)CrossRefGoogle Scholar
  9. 9.
    J.P. Duraud, F. Jollet, N. Thromat, M. Gautier, Ph. Maire, C. Le Gressus, E. Dartyge, ’Non-stoichiometry of pure and Zr- doped yttria ceramics: an EXAFS and XPS study’, submitted to J. Am. Ceram. Soc.Google Scholar
  10. 10.
    R.C. Anderson in ’High temperature oxides’ ed. by M. Aper, Academic Press, New York, 1–40 (1970)Google Scholar
  11. 11.
    P. Duwez, F.H. Brown, F. Odell, ‘The zirconia-yttria system’, J. Electrochem. Soc., 98, 350–352 (1951).Google Scholar
  12. 12.
    C.D. Wagner, ‘Auger parameter in electron spectroscopy for the identification of chemical species’, Anal. Chem., 47, 1201–1203 (1975).CrossRefGoogle Scholar
  13. 13.
    C.D. Wagner, D.E. Passoja, H.F. Hillery, T.G. Kinisky, H.A. Six, W.T. Jansen, J.A. Taylor, ‘Auger and photoelectron line energy relationships in aluminium-oxygen and silicon-oxygen compounds’, J. Vac. Sci. Technol., 21 (4), 933–944 (1982)CrossRefGoogle Scholar
  14. 14.
    S. Kohiki, S. Ozaki, T. Hamada, ‘Characterization of silicon compounds using the Auger parameter in X-ray photoelectron spectroscopy (XPS)’, Appl. Surf. Science, 28, 103–110 (1987)CrossRefGoogle Scholar
  15. 15.
    N.F. Mott, R.W. Geviney, ‘Electronic Processes in Ionic Crystals’, Clarendon, Oxford, 1948Google Scholar
  16. 16.
    C.D. Wagner, ‘Chemical shifts of Auger lines, and the Auger parameter’, Faraday Disc. Chem. Soc., 60, 291–301 (1975).CrossRefGoogle Scholar
  17. 17.
    C.D. Wagner, A. Joshi, ‘The Auger parameter, its utility and advantages: a review’, J. of Electron Spectroscopy and Related Phenomena, 47, 283–313 (1988)CrossRefGoogle Scholar
  18. 18.
    R.H. West, J.E. Castle, ‘The correlation of the Auger parameter with refractive index: an XPS study of silicate using ZrLa radiation’, Surf. Interf. Analysis, 4 (2), 68–75 (1982)CrossRefGoogle Scholar
  19. 19.
    H. Niedrig, ‘Electron backscattering from thin films’, J. Appl. Phys., 53 (4), R15–R49 (1982).CrossRefGoogle Scholar
  20. 20.
    T.H. Etsell, S.N. Flengas, ‘The electrical properties of solid oxide electrolytes’, Chem. Rev., 70, 339–376 (1970)CrossRefGoogle Scholar
  21. 21.
    K. Ando, Y. Oishi, ‘Oxygen self diffusion in Y2O3 and Y2O3-Zr02 solid solutions’, NATO-ASI, ser. B, 129, 203–215 (1985)CrossRefGoogle Scholar
  22. 22.
    Ph. Odier, J.P. Loup, ‘An unsual technique for the study of nonstoichiometry: the thermal emission of electrons. Results for Y203 and Ti02’, J. of Solid State Chem., 34, 107–119 (1980)CrossRefGoogle Scholar
  23. 23.
    R. Bratton, ’Defect structure of Y203-ZrO2 solid solutions’, J. Am. Ceram. Soc., 52, 213 (1969)CrossRefGoogle Scholar
  24. 24.
    A.M. Stoneham, ‘Ceramic Surfaces: theoretical studies’, J. Am. Ceram. Soc., 64 (1), 54–60 (1981).CrossRefGoogle Scholar
  25. 25.
    C.D. Wagner, D.A. Zatko, R.H. Raymond, ‘Use of the oxygen KLL Auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis’, Anal. Chem., 52, 1445–1451 (1980)CrossRefGoogle Scholar
  26. 26.
    D.C. Joy, D.E. Newbury, D.L. Davidson, ‘Electron channeling patterns on the scanning electron microscope’, J. Appl. Phys., 53 (8), R81-R122 (1982)CrossRefGoogle Scholar
  27. 27.
    C. Tang, P. Georgopoulos, J.B. Cohen, ‘Study of extended X-ray absorption fine structure for possible use in examining local atomic arrangements in oxides’, J. Am. Ceram. Soc., 65 (12), 625–629 (1982)CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. Gautier
    • 1
  • J. P. Duraud
    • 1
  • F. Jollet
    • 1
  • N. Thromat
    • 1
  • Ph. Maire
    • 1
  • C. Le Gressus
    • 1
  1. 1.IRDI/DESICP/DPC/SPCMCentre d’Etudes Nucléaires de SaclayGif-sur-YvetteFrance

Personalised recommendations