Dynamic Segregation in Multicomponent Oxides Under Chemical Potential Gradients

  • G. Petot-Ervas
Part of the NATO ASI Series book series (NSSE, volume 173)

Abstract

Reactivity and demixing tendency of multicomponent oxides are discussed on the basis of a formal treatment of matter transport under oxygen potential gradients. The present study shows how the dynamic segregation of cations near interfaces takes place in p-type semi-conducting oxides. This effect has been considered for different cases encountered depending on the range of stability of initially homogeneous multicomponent oxides. Experimental examples illustrate the importance of these phenomena.

Keywords

Oxygen Partial Pressure Oxide Scale Reduction Kinetic Chemical Potential Gradient Matter Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. PETOT-ERVAS, C. PETOT, to be publishedGoogle Scholar
  2. 2.
    P. KOFSTAD, Nonstoichiometry, Diffusion and Electrical Conductivity in binary metal oxides, J. Wiley, 1972Google Scholar
  3. 3.
    J. PHILIBERT, Diffusion et Transport de matière dans les oxydes, Editions de Physique, 1985Google Scholar
  4. 4.
    A.T. FROMHOLD, Theory of metal oxidation, North Holland, 163, 145, 1976Google Scholar
  5. 5.
    C. WAGNER, Corrosion Science, 9, 91, 1969CrossRefGoogle Scholar
  6. 6.
    F. GESMUNDO, F. VIANI, J. Phys. Chem. Sol. 42, 777, 1981CrossRefGoogle Scholar
  7. 7.
    P. OCHIN, G. PETOT-ERVAS, C. PETOT, J. Phys. Chem. Sol. 46, 695, 1985CrossRefGoogle Scholar
  8. 8.
    H. SCHMALZRIED, Reactivity of solids 117, 1986Google Scholar
  9. 9.
    H. SCHMALZRIED, W. LAQUA, P.L. LIN, Z. Naturforsch. 34a, 192, 1979Google Scholar
  10. 10.
    J. WOLFENSTINE, D. DIMOS, D.L. WOHLSTEDT, J. Am. Cer. Soc. C 117, 1985Google Scholar
  11. 11.
    H. SCHMALZRIED, W. LAQUA, Oxid. of metals, 15, 339, 1981CrossRefGoogle Scholar
  12. 12.
    G. BEN ABDERRAZIK, Thesis University Paris XI, 1986Google Scholar
  13. 13.
    F.H. STOTT, G.C. WOOD, D.P. WHITTLE, B.D. BASTOW, Y. SHIDA, Solid State Ionic 12, 365, 1984CrossRefGoogle Scholar
  14. 14.
    F.H. STOTT, J.S. PUNNI, G.C. WOOD, G. DEARNALEY, Transport in Nonstoichiometric Compounds, Ed. G. Simkowitch, V. Stubican, Plenum Press, 463, 1985CrossRefGoogle Scholar
  15. 15.
    N.B. PETERSON, Solid State Ionics 12, 201, 1984CrossRefGoogle Scholar
  16. 16.
    J. NOWOTNY, J. OBLAKOWSKI, A. SADOWSKI, Bull. Polish. Acad of Sciences Chemistry 33, 100, 1985Google Scholar
  17. 17.
    F.P. BAILEY, W.E. BORBIDGE, Surfaces, Interfaces in ceramic and ceramic metal systems, Ed. J. Pask, A. Evans, Plenum Press 525, 1981.Google Scholar
  18. 18.
    S. JASIENSKA, J. JANOWSKI, A. SADOWSKI, C. MONTY, G. PETOT-ERVAS, Cryst. latt Def. and Amorph. Mat. 16, 145, 1987.Google Scholar
  19. 19.
    G. PETOT-ERVAS, H. KLIMCZYK, C. MONTY, C. PETOT, J. JANOWSKI. Low Dimensional Defects in Nonstoichiometric Compounds, Ed. J. Nowotny, W. Weppner. Kluver Academic Publishers (to be published)Google Scholar
  20. 20.
    J.R.H. BLACK, W.D. KINGERY, J. Am. Cer. Soc. 62, 176, 1979CrossRefGoogle Scholar
  21. 21.
    W. HIRSCHWALD, I. SIKORA, F. STOLZE, Surface and Interface Analysis 7, 155, 1985CrossRefGoogle Scholar
  22. 22.
    I. SIKORA, F. STOLZE, W. HIRSCHWALD, Surface and Interface Analysis 10, 424, 1987.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • G. Petot-Ervas
    • 1
  1. 1.CNRS, Laboratoire d’Ingénierie des Matériaux et des Hautes PressionsUniversité Paris-NordVilletaneuseFrance

Personalised recommendations