The “Macroscopic Atom” Model: An Easy Tool to Predict Thermodynamic Quantities

  • A. K. Niessen
  • A. R. Miedema
Part of the NATO ASI Series book series (ASIC, volume 286)

Abstract

The model developed by Miedema and coworkers [1–4] to predict enthalpy effects upon alloying uses the “macroscopic atom” as a basic concept to describe the microscopic geometry of alloys. The assumption that enthalpy effects are generated at the interface of dissimilar neighbouring “macroscopic atoms” enables one to predict the enthalpy of alloying. Not so well-known are the applications of “macroscopic atom” model to predict other quantities, such as surface energies, the enthalpy of formation of monovacancies and related topics. These quantities will be reviewed in this paper, emphazing the ease to estimate their values in a very simple way from a few experimental observations. This paper is a condensed version of a manuscript for three chapters of a book to be published by North-Holland Publishing Co. entitled “Cohesion in Metals” [5].

Keywords

Amorphous Alloy Pure Metal Isomer Shift Atanic Cell Demarcation Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.R. Miedema and P.F. de Châtel in Theory of Alloy Phase Formation, Ed. L.H. Bennet (Met.Soc. AIME, Ohio, 1979).Google Scholar
  2. [2]
    A.R. Miedema, P.F. de Châtel and F.R. de Boer, Physica 100B (1980) 1.Google Scholar
  3. [3]
    A.R. Miedema, F.R. de Boer and R. Boom in Thermodynamics of Alloys (North-Holland Publishing Co, Amsterdam, 1981)Google Scholar
  4. [4]
    A.K. Niessen, F.R. de Boer, R. Boom, P.F. de Châtel, W.C.M. Mattens and A.R. Miedema, CALPHAD 7 (1983) 51.CrossRefGoogle Scholar
  5. [5]
    F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema and A.K. Niessen, Cohesion in Metals (North-Holland Publishing Co, Amsterdam, to be published)Google Scholar
  6. [6]
    A.R. Miedema, R. Boom and F.R. de Boer in Crystal Structure and Chemical Bonding in Inorganic Chemistry, Eds. C.J.M. Rooymans and A. Rabenau (North-Holland Publ.Co., Amsterdam, 1975).Google Scholar
  7. [7]
    L.A. Girifalco and R.J. Good, J. Phys. Chem. 61 (1957) 904.CrossRefGoogle Scholar
  8. [8]
    F.M. Fowkes, J. Phys. Chem. 67 (1963) 2538.CrossRefGoogle Scholar
  9. [9]
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser and K.K. Kelley, Selected Values of the Thermodynamic Properties of Binary Alloys (Am. Soc. Metals, Ohio, 1973).Google Scholar
  10. [10]
    M. Hansen and K. Anderko, Constitution of Binary Alloys (Mc Graw-Hill, New York, Toronto, London, 1958)Google Scholar
  11. [10]a
    R.P. Elliot, ibid. First Supplement (1965)Google Scholar
  12. [10]b
    F.A. Shunk, ibid. Second Supplement (1969).Google Scholar
  13. [11]
    W.G. Moffat, The Handbook of Binary Phase Diagrams (General Electric Company, Schenectady, 1977 and updates).Google Scholar
  14. [12]
    A.R. Miedema and A.K. Niessen, CALPHAD 7, (1983) 27.CrossRefGoogle Scholar
  15. [13]
    A.K. Niessen and A.R. Miedema, Ber. Bunsenges. Phys. Chem. 87 (1983) 717.Google Scholar
  16. [14]
    A.K. Niessen and A.R. Miedema, CALPHAD Conf Liège (1983).Google Scholar
  17. [15]
    A.K. Niessen, F.R. de Boer, R. Boom and A.R. Miedema, Physica B, A review of Co-based alloys, to be published.Google Scholar
  18. [16]
    A.R. Miedema and A.K. Niessen, Physica 114B (1982) 367.Google Scholar
  19. [17]
    W. Kuemmerle and U. Gradmann, Phys. Status Solidi (a) 45 (1978) 171.CrossRefGoogle Scholar
  20. [18]
    U. Gradmann and H.O. Isbert, J. Magn. Magn. Mater. 15–18 (1980) 1109.CrossRefGoogle Scholar
  21. [19]
    S. Morozumi, M. Kikuchi and T. Nisheno, J. Mat. Sci. 16 (1981) 2137.CrossRefGoogle Scholar
  22. [20]
    J.T. Klomp, Mat. Res. Soc. Symposium Proc. 40 (1985) 381.CrossRefGoogle Scholar
  23. [21]
    N. Mârtensson and B. Johansson, Solid State Comm. 32 (1979) 791.CrossRefGoogle Scholar
  24. [22]
    A.R. Miedema and R. Boom, Z. Metallkde 69 (1978) 183.Google Scholar
  25. [23]
    H. Jones and G.M. Leak, Met. Sci. J. 1 (1967) 211.Google Scholar
  26. [24]
    A.R. Miedema, Z. Metallkde 69 (1978) 287.Google Scholar
  27. [25]
    G. Lang, Z. Metallkde 67 (1976) 549; also in Handbook of Chemistry and Physics (CRS Press, Cleveland 1977).Google Scholar
  28. [26]
    A. Seeger, Crystal Lattice Defects 4 (1973) 221.Google Scholar
  29. [27]
    A.R. Miedema, Z. Metallkde 70 (1979) 345.Google Scholar
  30. [28]
    G.K. Wertheim, Mat. Sci. Eng. 42 (1980) 85.CrossRefGoogle Scholar
  31. [29]
    H. Bakker, J. Less-Common Met. 105 (1985) 129.CrossRefGoogle Scholar
  32. [30]
    R.B. Schwarz and W.J. Johnson, Phys. Rev. Lett. 51 (1983) 415.CrossRefGoogle Scholar
  33. [31]
    K.H.J. Buschow, Solid State Comm. 43 (1982) 171.CrossRefGoogle Scholar
  34. [32]
    A.R. Miedema and F. van der Woude, Physica 100B (1980) 145.Google Scholar
  35. [33]
    F. van der Woude and A.R. Miedema, Solid State Comm. 39 (1981) 1097.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • A. K. Niessen
    • 1
  • A. R. Miedema
    • 1
  1. 1.Philips Research LaboratoriesEindhovenNetherlands

Personalised recommendations