Intravascular echographic assessment of vessel wall characteristics: a correlation with histology

  • W. J. Gussenhoven
  • C. E. Essed
  • P. Frietman
  • F. Mastik
  • C. Lancée
  • C. Slager
  • P. Serruys
  • P. Gerritsen
  • H. Pieterman
  • N. Bom

Summary

In vivo application of intravascular high frequency ultrasonic imaging for peripheral and coronary artery disease is a promising technique for vascular surgeons, radiologists and cardiologists. This report demonstrates in vitro results obtained with a high frequency imaging catheter (40 MHz) in 70 human specimens including arteries with and without atherosclerosis, veins, coronary artery bypass grafts and vascular prosthetic material. Correlation between the ultrasonic images and the histologic characteristics of the corresponding vessel wall tissue and lumen geometry was established. In addition, the effect of intervention techniques i.e. balloon angioplasty, spark erosion and laser were studied with ultrasound and histology. It is anticipated that development of such a catheter imaging technique has potential for diagnostic imaging and for combination with therapeutic systems.

Keywords

Atherosclerotic Lesion Internal Elastic Lamina Elastin Fiber Muscular Artery Elastic Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pandian NG, Kreis A, Brockway B, Isner JM, Sacharoff A, Boleza E, Caro R, Muller D. Ultrasound angioscopy: Realtime, two-dimensional, intraluminal ultrasound imaging of blood vessels. Am J Cardiol 1988; 62: 493–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Linker DT, Yock PG, Thapliyal HV et al. In vitro analysis of backscattered amplitude from normal and diseased arteries using a new intraluminal ultrasonic catheter. JACC 1988; 11: 4A.Google Scholar
  3. 3.
    Yock PG, Johnson EL, Linker DT. Intravascular ultrasound. Development and clinical potential. Am J Cardiac Imaging 1988; 2: 185–93.Google Scholar
  4. 4.
    Meyer CR, Chiang BS, Fechner KP, Fitting DW, Williams DM, Buda AJ. Feasibility of high resolution intravascular ultrasonic imaging catheters. Radiology 1988; 168:113–6.PubMedGoogle Scholar
  5. 5.
    Meyer S, Fitting DW, Chiang EH, Williams DM, Buda AJ. Development of an intravascular ultrasonic catheter imaging system. SPIE Vol. 904. Microsensors and Catheter-Based Imaging Technology 1988: 116–7.Google Scholar
  6. 6.
    Gussenhoven WJ, Essed CE, Lancée CT, Mastik F, Frietman P, van Egmond FC, Reiber J, Bosch H, van Urk H, Roelandt J, Bom N. Arterial wall characteristics determined by intravascular ultrasound imaging: an in vitro study. J Am Coll Cardiol (in press).Google Scholar
  7. 7.
    Gussenhoven WJ, Essed CE, Frietman P, van Egmond FC, Lancée CT, van Cappellen WA, Roelandt J, Serruys PW, Gerritsen GP, van Urk H, Bom N. Intravascular ultrasonic imaging: histologic and echographic correlation. Eur J Vase Surg (in press).Google Scholar
  8. 8.
    Lillie RD, Fullmer HM. Connective tissue fibers and membranes. In: Histopathologic technique and practical histochemistry. London: McGraw-Hill Company, 1976: 679–718.Google Scholar
  9. 9.
    Ham AW. Histology. Chapter 22: The circulatory system. Oxford: Blackwell Scientific Publications, 1969: 581–691.Google Scholar
  10. 10.
    Silver MD, Wilson GJ. Pathology of cardiovascular prostheses including coronary artery bypass and other vascular grafts. In: Silver MD, ed. Cardiovascular pathology, Vol II. New York: Churchill Livingstone, 1983: 1225–96.Google Scholar
  11. 11.
    Haust MD. Atherosclerosis — lesions and sequelae. In: Silver MD, ed. Cardiovascular pathology, Vol II. New York: Churchill Livingstone, 1983: 191–315.Google Scholar
  12. 12.
    Anderson JR. Disturbances of blood flow and body fluids. In: Anderson JR, ed. Muir’s textbook of pathology. London: Edward Arnold, 1985: 10.1–10.47.Google Scholar
  13. 13.
    Essed CE, van den Brand M, Becker AE. Transluminal coronary angioplasty and early stenosis. Fibrocellular occlusion after wall laceration. Br Heart J 1983; 49: 393–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Slager CJ, Essed CE, Schuurbiers JCH, Bom N, Serruys PW, Meester GT. Vaporization of atherosclerotic plaques by spark erosion. J Am Coll Cardiol 1985; 5:1382–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Geschwind HJ, Blair JD, Monkolsmai D et al. Development and experimental application of contact probe catheter for laser angioplasty. J Am Coll Cardiol 1987; 9: 101–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Verdaasdonk RM, Cross FW, Borst C. Physical properties of sapphire fibre tips for laser angioplasty. Lasers Med Sci 1987; 2:183–8.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • W. J. Gussenhoven
    • 1
    • 5
  • C. E. Essed
    • 2
    • 6
  • P. Frietman
    • 1
  • F. Mastik
    • 1
  • C. Lancée
    • 1
  • C. Slager
    • 1
  • P. Serruys
    • 1
  • P. Gerritsen
    • 3
  • H. Pieterman
    • 4
  • N. Bom
    • 1
  1. 1.Departments of ThoraxcenterAcademic Hospital Dijkzigt and Erasmus UniversityThe Netherlands
  2. 2.Departments of Clinical PathologyAcademic Hospital Dijkzigt and Erasmus UniversityThe Netherlands
  3. 3.Departments of Vascular SurgeryAcademic Hospital Dijkzigt and Erasmus UniversityThe Netherlands
  4. 4.Departments of RadiologyAcademic Hospital Dijkzigt and Erasmus UniversityThe Netherlands
  5. 5.Departments of the Interuniversity Cardiology Institute of the NetherlandsAcademic Hospital Dijkzigt and Erasmus UniversityThe Netherlands
  6. 6.The laboratory of Volksgezondheid in FrieslandLeeuwardenThe Netherlands

Personalised recommendations