Ion Beam — Induced Crystalline to Amorphous Transformations in Ceramic Materials

  • J. L. Whitton
Part of the NATO ASI Series book series (NSSE, volume 170)

Abstract

One of the first reports of a radiation-induced phase change from the crystalline to amorphous state was observed in naturally occurring minerals containingα-emitting radioactivity (1). The term “metamictisation” from the Greek meta (mixed or between) and miktos (compounded) was coined to describe the amorphization of the crystal structure of a mineral due to radiation from contained or nearby radioactive atoms. This was observed soon after von Laue’s discovery of x-rays when mineralogists noted the loss of crystalline structure in minerals exposed to radioactivity.

Keywords

Uranium Dioxide Rutherford Backscattering Fractional Release Range Profile Kikuchi Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fassler A: Z. Krist. 104 (1942) 81.Google Scholar
  2. 2.
    Hauser 0, M Schenk: Kernenergie 6 (1963) 655; Phys. Stat. Sol. 6 (1964) 83.Google Scholar
  3. 3.
    Trillat JJ: J. Chem. Phys. 53 (1956) 510.Google Scholar
  4. 4.
    Gianolo U: J. Appl. Phys. 28 (1957) 868.CrossRefGoogle Scholar
  5. 5.
    Izvi K, H Suzuki: J. Phys. Soc. Japan 18 (Suppl. Ill) (1963) 210.Google Scholar
  6. 6.
    Parson JR: Phil. Mag. 12 (1965) 1159.CrossRefGoogle Scholar
  7. 7.
    Pohlau C, H Lutz, R Sizman: Z. Angew Physik 17 (1964) 404.Google Scholar
  8. 8.
    Gonser U, B Okkerse: J. Phys. Chem. Solids. 7 (1958) 55.CrossRefGoogle Scholar
  9. 9.
    Price PB, RM Walker: J. Appl. Phys. 33 (1962) 2625, 3400.Google Scholar
  10. 10.
    Cotterill, Rodney: The Cambridge Guide to the Material World. Cambridge: Cambridge University Press, 1985, 119.Google Scholar
  11. 11.
    Gilman JJ: Scient. American 55 (Sept. 1967).Google Scholar
  12. 12.
    Bowen H Kent: Scient. American 55 (Oct. 1986).Google Scholar
  13. 13.
    Freeman JH: Radiat. Eff. 100 (3-4) (1986) 161.Google Scholar
  14. 14.
    Sioshansi Piran: Mater. Engr. (Feb. 1987).Google Scholar
  15. Whitton JL: Channeling. DV Morgan (ed). New York: John Wiley & Sons, 1973) 225 and references within.Google Scholar
  16. 16.
    Andersen T, G Sorensen: Radiat. Eff. 2 (1969) 111.CrossRefGoogle Scholar
  17. 17.
    Lutz H, R Sizman: Phys. Lett. 5 (1963) 113.CrossRefGoogle Scholar
  18. 18.
    Pohlau C, H Lutz, R Sizman: Z. Angew. Physik 17 (1964) 404.Google Scholar
  19. 19.
    Behrisch R (ed): Sputtering by Particle Bombardment I. Topics Appl. Phys. 47. Berlin/New York: Springer-Verlag, 1981.Google Scholar
  20. 20.
    Whitton JL: J. Appl. Phys. 36 (1965) 3917.CrossRefGoogle Scholar
  21. 21.
    Matzke Hj, JL Whitton: Can. J. Phys. 44 (1966) 995.CrossRefGoogle Scholar
  22. 22.
    Whitton JL, Hj Matzke: Can. J. Phys. 44 (1966) 2905.CrossRefGoogle Scholar
  23. Joslin DL: this volume.Google Scholar
  24. McHargue, CJ: this volume.Google Scholar
  25. 25.
    McHargue CJ, GC Farlow, CW White, BR Appleton, P Angelini, H Naramoto: Nucl. Instr. Methods Phys. Res. BIO/11 (1985) 569.CrossRefGoogle Scholar
  26. 26.
    Naguib HM, JR Singleton, WA Grant, G Carter: J. Mater. Sci. 8 (1973) 1633.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. L. Whitton
    • 1
  1. 1.Department of PhysicsQueen’s UniversityKingstonCanada

Personalised recommendations