Computational Strategies and Improvements in the Linear Algebraic Variational Approach to Rearrangement Scattering

  • David W. Schwenke
  • Mirjana Mladenovic
  • Meishan Zhao
  • Donald G. Truhlar
  • Yan Sun
  • Donald J. Kouri
Part of the NATO ASI Series book series (ASIC, volume 277)

Abstract

We discuss the computational steps in calculating quantum mechanical reactive scattering amplitudes by the 2 generalized Newton variational principle with emphasis on computational strategies and recent improvements that make the calculations more efficient. We place special emphasis on quadrature techniques, storage management strategies, use of symmetry, and boundary conditions. We conclude that an efficient implementation of these procedures provides a powerful algorithm for the accurate solution of the Schroedinger equation for rearrangements.

Keywords

Matrix Element Radial Function Quadrature Point Radial Integral Reactance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Feshbach, Ann. Phys. (NY) 19, 287 (1962).CrossRefGoogle Scholar
  2. 2.
    K. M. Watson and J. Nuttall, Topics in Several Particle Dynamics (Holden-Day, San Francisco, 1967).Google Scholar
  3. 3.
    P. G. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).CrossRefGoogle Scholar
  4. 4.
    W. H. Miller, J. Chem. Phys. 50, 407 (1969).CrossRefGoogle Scholar
  5. 5.
    D. G. Truhlar, J. Abdallah, Jr., and R. L. Smith, Adv. Chem. Phys. 25, 211 (1974).CrossRefGoogle Scholar
  6. 6.
    I. Shavitt, in Methods of Electronic Structure Theory, Vol. 3, edited by H. F. Schaefer III (Plenum, New York, 1977), p. 189.Google Scholar
  7. 7.
    M. J. Seaton, Phil. Trans. A 245, 469 (1953).CrossRefGoogle Scholar
  8. 8.
    P. G. Burke, Comments At. Molec. Phys. 3, 31 (1971).Google Scholar
  9. 9.
    R. K. Nesbet, Adv. Quantum Chem. 9, 215 (1975).CrossRefGoogle Scholar
  10. 10.
    W. M. Huo, T. L. Gibson, M. A. P. Lima, and V. McKoy, Phys. Rev. A. 36, 1632 (1987).CrossRefGoogle Scholar
  11. 11.
    Y. C. Tang, in Few-Body Systems and Multiparticle Dynamics, edited by D. A. Micha (American Institute of Physics Conference Proceedings No. 162, New York, 1987), p. 174.Google Scholar
  12. 12.
    D. J. Kouri, in Theory of Chemical Reaction Dynamics, edited by M. Baer (CRC Press, Boca Raton, Florida, 1985), Vol. I, p. 163.Google Scholar
  13. 13.
    K. Haug, D. W. Schwenke, Y. Shima, D. G. Truhlar, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 86, 6757 (1986).CrossRefGoogle Scholar
  14. 14.
    J. Z. H. Zhang, D. J. Kouri, K. Haug, D. W. Schwenke, Y. Shima, and D. G. Truhlar, J. Chem. Phys. 88, 2492 (1988).CrossRefGoogle Scholar
  15. 15.
    J. Z. H. Zhang, Y. Zhang, D. J. Kouri, B. C. Garrett, K. Haug, D. W. Schwenke, and D. G. Truhlar, Faraday Discussions Chem. Soc.84, in press.Google Scholar
  16. 16.
    D. W. Schwenke, D. G. Truhlar, and D. J. Kouri, J. Chem. Phys. 86, 2772 (1987).CrossRefGoogle Scholar
  17. 17.
    W. H. Miller and B. M. D. D. Jansen op de Haar, J. Chem. Phys. 86, 6213 (1987).CrossRefGoogle Scholar
  18. 18.
    J. Z. H. Zhang, S.-I. Chu, and W. H. Miller, J. Chem. Phys. 88, 6233 (1988).CrossRefGoogle Scholar
  19. 19.
    D. W. Schwenke, K. Haug, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 91, 6080 (1987).CrossRefGoogle Scholar
  20. 20.
    D. W. Schwenke, K. Haug, M. Zhao, D. G. Truhlar, Y. Sun, J. Z. H. Zhang, and D. J. Kouri, J. Phys. Chem. 92, 3202 (1988).CrossRefGoogle Scholar
  21. 21.
    R. G. Newton, Scattering Theory of Particles and Waves (McGraw-Hill, New York, 1966), Sec. 11.3.Google Scholar
  22. 22.
    A. Messiah, Quantum Mechanics (John Wiley & Sons, New York, 1966), chapter XIX.Google Scholar
  23. 23.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd edition (Clarendon Press, Oxford, 1965), p. 349.Google Scholar
  24. 24.
    R. D. Levine, Quantum Mechanics of Molecular Rate Processes (Oxford University Press, London, 1969), Section 3.2.3.Google Scholar
  25. 25.
    D. G. Truhlar and J. Abdallah, Jr., Phys. Rev. A 9, 297 (1974).CrossRefGoogle Scholar
  26. 26.
    G. R. Satchler, Direct Nuclear Reactions (Oxford University Press, New York, 1983), pp. 264ff.Google Scholar
  27. 27.
    L. M. Hubbard, S. Shi, and W. H. Miller, J. Chem. Phys. 78, 2381 (1983).CrossRefGoogle Scholar
  28. 28.
    G. C. Schatz, L. M. Hubbard, P. S. Dardi, and W. H. Miller, J. Chem. Phys. 81, 231 (1984).CrossRefGoogle Scholar
  29. 29.
    B. H. Choi, R. T. Poe, and K. T. Tang, J. Chem. Phys. 81, 4979 (1984).CrossRefGoogle Scholar
  30. 30.
    P. S. Dardi, S. Shi, and W. H. Miller, J. Chem. Phys. 83, 575 (1985).CrossRefGoogle Scholar
  31. 31.
    M. Mladenovic, M. Zhao, D. G. Truhlar, D. W. Schwenke, Y. Sun, and D. J. Kouri, Chem. Phys. Lett. 146, 358 (1988).CrossRefGoogle Scholar
  32. 32.
    M. Zhao, M. Mladenovic, D. G. Truhlar, D. W. Schwenke, Y. Sun, D. J. Kouri, and N. C. Blais, J. Amer. Chem. Soc., in press.Google Scholar
  33. 33.
    M. Mladenovic, M. Zhao, H. Dong, D. G. Truhlar, D. W. Schwenke, Y. Sun, and D. J. Kouri, unpublished calculations.Google Scholar
  34. 34.
    K. Haug, D. W. Schwenke, D. G. Truhlar, Y. Zhang, J. Z. H. Zhang, and D. J. Kouri, J. Chem. Phys. 87, 1892 (1987).CrossRefGoogle Scholar
  35. 35.
    Y. C. Zhang, J. Z. H. Zhang, D. J. Kouri, K. Haug, D. W. Schwenke, and D. G. Truhlar, Phys. Rev. Lett. 60, 2367 (1988).CrossRefGoogle Scholar
  36. 36.
    K. Haug, D. W. Schwenke, Y. Shima, D. G. Truhlar, J. Z. H. Zhang, Y. Zhang, Y. Sun, D. J. Kouri, and B. C. Garrett, in Science and Engineering on Cray Supercomputers (Cray Research, Minneapolis, 1987), p. 427.Google Scholar
  37. 37.
    D. W. Schwenke, K. Haug, D. G. Truhlar, R. H. Schweitzer, J. Z. H. Zhang, Y. Sun, and D. J. Kouri, Theoret. Chim. Acta 72, 237 (1987).CrossRefGoogle Scholar
  38. 38.
    D. J. Kouri, Y. Sun, R. C. Mowrey, J. Z. H. Zhang, D. G. Truhlar, K. Haug, and D. W. Schwenke, in Mathematical Frontiers in Computational Chemical Physics Physics, edited by D. G. Truhlar (Springer-Verlag, New York, 1988), in press.Google Scholar
  39. 39.
    P. Halvick, D. J. Kouri, M. Mladenovic, D. W. Schwenke, O. Sharafeddin, Y. Sun, D. G. Truhlar, C.-H. Yu, and M. Zhao, unpublished calculations.Google Scholar
  40. 40.
    Y. Sun, C.-H. Yu, D. J. Kouri, D. W. Schwenke, P. Halvick, M. Mladenovic, and D. G. Truhlar, to be published.Google Scholar
  41. 41.
    Y. Sun, D. J. Kouri, D. W. Schwenke, M. Zhao, P. Halvick, and D. G. Truhlar, to be published.Google Scholar
  42. 42.
    J. M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258 (1952).CrossRefGoogle Scholar
  43. 43.
    M. A. Brandt, D. G. Truhlar, and R. L. Smith, Computer Phys. Commun. 5, 456 (1973).CrossRefGoogle Scholar
  44. 44.
    D. A. Micha, Arkiv Fysik 30, 411 (1965).Google Scholar
  45. 45.
    D. H. Bailey, SIAM J. Sci. Stat. Comput. 9, 603 (1988).CrossRefGoogle Scholar
  46. 46.
    V. Strassen, Numer. Math. 13, 354 (1969).CrossRefGoogle Scholar
  47. 47.
    D. W. Schwenke and D. G. Truhlar, Computer Phys. Commun. 34, 57 (1984).CrossRefGoogle Scholar
  48. 48.
    D. G. Truhlar and A. Kuppermann, J. Amer. Chem. Soc. 93, 1840 (1971).CrossRefGoogle Scholar
  49. 49.
    K. Haug, Ph.D. thesis, University of Minnesota, Minneapolis, 1987 (unpublished).Google Scholar
  50. 50.
    M. E. Riley and A. Kuppermann, Chem. Phys. Lett. 1, 537 (1968).CrossRefGoogle Scholar
  51. 51.
    G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1983), page 92.Google Scholar
  52. 52.
    J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, UNPACK User Guide (Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania, 1979).Google Scholar
  53. 53.
    I. C. Percival and M. J. Seaton, Proc. Camb. Phil. Soc. 53, 654 (1957).CrossRefGoogle Scholar
  54. 54.
    K. Onda and D. G. Truhlar, J. Chem. Phys. 71, 5097 (1979).CrossRefGoogle Scholar
  55. 55.
    A. J. C. Varandas, F. B. Brown, C. A. Mead, D. G. Truhlar, and N. C. Blais, J. Chem. Phys. 86, 6258 (1987).CrossRefGoogle Scholar
  56. 56.
    C. Duneczky, R. E. Wyatt, D. Chatfield, K. Haug, D. W. Schwenke, D. G. Truhlar, Y. Sun, and D. J. Kouri, Computer Phys. Commun., to be published.Google Scholar
  57. 57.
    I. P. Hamilton and J. C. Light, J. Chem. Phys. 84, 306 (1986).CrossRefGoogle Scholar
  58. 58.
    .Y. C. Zhang, J. Z. H. Zhang, D. J. Kouri, K. Haug, D. W. Schwenke, and D. G. Truhlar, unpublished calculations.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • David W. Schwenke
    • 1
  • Mirjana Mladenovic
    • 2
  • Meishan Zhao
    • 2
  • Donald G. Truhlar
    • 2
  • Yan Sun
    • 3
  • Donald J. Kouri
    • 3
  1. 1.NASA Ames Research CenterMoffett FieldUSA
  2. 2.Department of Chemistry, Chemical Physics Program, and Supercomputer InstituteUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of ChemistryUniversity of HoustonHoustonUSA

Personalised recommendations