Quantum Dynamics of Small Systems using Discrete Variable Representations

  • J. C. Light
  • R. M. Whitnell
  • T. J. Park
  • S. E. Choi
Part of the NATO ASI Series book series (ASIC, volume 277)

Abstract

The discrete variable representation (DVR) on Gaussian quadrature points for orthogonal polynomials is defined. It is shown that the Hamiltonian for multidimensional systems is easy to evaluate and sparse in the DVR. Methods of solution of the time dependent Schrödinger equation in the DVR are presented. A highly efficient method of solution of the time independent Schrödinger equation for many eigenvalues and eigenvectors is presented which is based (in the DVR) on sequential adiabatic-sudden partitioning diagonalization, truncation, and recoupling of lower dimensional solutions. Brief summaries are presented of the application of these techniques to predissociation of NaI, vibrational states of H3+, and the thermal rate constant of the H+H2 reaction.

Keywords

Wave Packet Vibrational State Time Dependent Problem Large Amplitude Motion Flux Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity, 2nd ed. (Clarendon, Oxford, 1987).Google Scholar
  2. R. B. Bernstein, Ed., Atom-Molecule Collision Theory (Plenum, New York, 1979).Google Scholar
  3. W. H. Miller, Ed., Dynamics of Molecular Collisions (Plenum, New York, 1976).Google Scholar
  4. D. C. Clary, Ed., The Theory of Chemical Reaction Dynamics (Reidel, New York, 1986).Google Scholar
  5. 2.
    D. H. Levy, Ann. Rev. Phys. Chem. 31, 197 (1980).CrossRefGoogle Scholar
  6. J. A. Beswick and J. Jortner, Adv. Chem. Phys. 47, 363 (1981).CrossRefGoogle Scholar
  7. G. Scoles, Ed., Atomic and Molecular Beam Methods (Oxford University Press, London, 1987)Google Scholar
  8. M. Dantus, M. J. Rosker, and A. H. Zewail, J. Chem. Phys. 87, 2395 (1987).CrossRefGoogle Scholar
  9. 3.
    M. Karplus, R. Porter, and R. D. Sharma, J. Chem. Phys. 49, 3259 (1965).CrossRefGoogle Scholar
  10. R. N. Porter and L. M. Raff, in Dynamics of Molecular Collisions, Part A, W. H. Miller, Ed. (Plenum, New York, 1976).Google Scholar
  11. 4.
    J. C. Tully, Acc. Chem. Res. 14, 188 (1981).CrossRefGoogle Scholar
  12. 5.
    C. H. Mak, H. C. Andersen, and S. M. George, J. Chem. Phys. 88, 4052 (1988).CrossRefGoogle Scholar
  13. 6.
    R. E. Cline, Jr., and P. G. Wolynes, J. Chem. Phys. 88, 4334 (1988).CrossRefGoogle Scholar
  14. R. D. Coalson, D. L. Freeman, and J. D. Doll, J. Chem. Phys. 85, 4567 (1986).CrossRefGoogle Scholar
  15. 7.
    E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw-Hill, New York, 1955).Google Scholar
  16. 8.
    I. P. Hamilton and J. C. Light, J. Chem. Phys. 84, 306 (1986).CrossRefGoogle Scholar
  17. I. P. Hamilton, J. Chem. Phys. 87, 774 (1987).CrossRefGoogle Scholar
  18. 9.
    Z. Bacic and J. C. Light, J. Chem. Phys. 85, 4594 (1986); ibid. 86, 3065 (1987).CrossRefGoogle Scholar
  19. 9.
    Z. Bacic, D. Watt, and J. C. Light, J. Chem. Phys. 89, 947 (1988).CrossRefGoogle Scholar
  20. 10.
    J. C. Light and Z. Bacic, J. Chem. Phys. 87, 4008 (1987).CrossRefGoogle Scholar
  21. 11.
    J. V. Lill, G. A. Parker, and J. C. Light, Chem. Phys. Lett. 89, 483 (1982).CrossRefGoogle Scholar
  22. J. C. Light, I. P. Hamilton, and J. V. Lill, J. Chem. Phys. 82, 1400 (1985); Z. Bacic, R. M. Whitnell, D. Brown, and J. C. Light, Comp. Phys. Commun. (in press).CrossRefGoogle Scholar
  23. 12.
    A. Askar and A. Cakmak, J. Chem. Phys. 68, 2794 (1978).CrossRefGoogle Scholar
  24. 13.
    T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).CrossRefGoogle Scholar
  25. 14.
    S. E. Choi and J. C. Light, private communication.Google Scholar
  26. 15.
    R. M. Whitnell, Ph.D. Thesis, Univ. of Chicago, 1988 (submitted); R. M. Whitnell and J. C. Light, J. Chem. Phys. (in press).Google Scholar
  27. 16.
    T. J. Park, Ph.D. Thesis, Univ. of Chicago, 1988 (submitted); T. J. Park and J. C. Light, private communication.Google Scholar
  28. 17.
    D. Gottlieb and S. Orzag, Numerical Analysis of Spectral Methods, Theory and Applications (SIAM, Philadelphia PA, 1977).Google Scholar
  29. L. Fox and I. B. Parker, Chebyshev Polynomials in Numerical Analysis (Oxford University Press, London, 1968); for recent applications in chemical physics, see R. Friesner, J. Chem. Phys. 85, 1462 (1986); ibid. 86, 3522 (1987).Google Scholar
  30. 18.
    L. Fox, in Methods of Numerical Approximation, D. C. Hanscomb, Ed. (Pergamon, New York, 1966).Google Scholar
  31. 19.
    R. A. Friesner, J. Phys. Chem. 92, 3091 (1988).CrossRefGoogle Scholar
  32. 20.
    T. S. Rose, M. J. Rosker, and A. H. Zewail, J. Chem. Phys. 88, 6672 (1988)CrossRefGoogle Scholar
  33. M. J. Rosker, T. S. Rose, and A. H. Zewail, Chem. Phys. Lett 146, 175 (1988).CrossRefGoogle Scholar
  34. 21.
    W. H. Miller, J. Chem. Phys. 61, 1823 (1974).CrossRefGoogle Scholar
  35. 22.
    W. H. Miller, S. C. Schwartz, and J. W. Tromp, J. Chem. Phys. 79, 4889 (1983).CrossRefGoogle Scholar
  36. 23.
    K. Yamashita and W. H. Miller, J. Chem. Phys. 82, 5475 (1985).CrossRefGoogle Scholar
  37. 24.
    See, for example, C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, New Jersey, 1956).Google Scholar
  38. 25.
    D. O. Harris, G. G. Engerholm, and W. D. Gwinn, J. Chem. Phys. 43, 1515 (1965)CrossRefGoogle Scholar
  39. P. F. Endres, J. Chem. Phys. 47, 798 (1967).Google Scholar
  40. 26.
    A. S. Dickenson and P. R. Certain, J. Chem. Phys. 49, 4209 (1968) (see, also, ref. 18).CrossRefGoogle Scholar
  41. 27.
    R. W. Heather and J. C. Light, J. Chem. Phys. 79, 147 (1983)CrossRefGoogle Scholar
  42. R. M. Whitnell and J. C. Light, J. Chem. Phys. 86, 2007 (1987)CrossRefGoogle Scholar
  43. J. V. Lill, G. A. Parker, and J. C. Light, J. Chem. Phys. 85, 900 (1986).CrossRefGoogle Scholar
  44. 28.
    B. Shizgal and R. Blackmore, J. Comput. Phys. 55, 313 (1984);CrossRefGoogle Scholar
  45. R. Blackmore and B. Shizgal, Phys. Rev. A31, 1855 (1985).Google Scholar
  46. 29.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Nat. Bur. Std. Applied Mathematics Series 55 (U. S. Govt Printing Office, Washington, D.C., 1964)Google Scholar
  47. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Nat. Bur. Std. Applied Mathematics Series 55 (U. S. Govt Printing Office, Washington, D.C., 1964); P. Dennery and A. Krzywicki, Mathematics for Physicists (Harper & Row, New York, 1967).Google Scholar
  48. 30.
    M. D. Feit and J. A. Fleck, J. Chem. Phys. 78, 301 (1982); 80, 2578 (1984).CrossRefGoogle Scholar
  49. 31.
    R. Kosloff and R. Kosloff, J. Chem. Phys. 79, 1823 (1983).CrossRefGoogle Scholar
  50. D. Kosloff and R. Kosloff, J. Comput Phys. 52, 35 (1983)CrossRefGoogle Scholar
  51. R. Kosloff and C. Cerjan, J. Chem. Phys. 81, 3722 (1984).CrossRefGoogle Scholar
  52. 32.
    D. Kouri and R. C. Mowrey, J. Chem. Phys. 86, 2087 (1987); 84, 6466 (1986).CrossRefGoogle Scholar
  53. G. Wahnstrom and H. Metiu, Chem. Phys. Lett 134, 531 (1987)CrossRefGoogle Scholar
  54. 32.
    B. Jackson and H. Metiu, J. Chem. Phys. 86, 1026 (1987).CrossRefGoogle Scholar
  55. R. Heather and H. Metiu, J. Chem. Phys. 87, 5497 (1987).CrossRefGoogle Scholar
  56. 33.
    R. Heather and H. Metiu, J. Chem. Phys. 86, 5009 (1987)CrossRefGoogle Scholar
  57. G. Jolicard, C. Le Forestier, and E. J. Austin, J. Chem. Phys. 88, 1026 (1988).CrossRefGoogle Scholar
  58. 34.
    P. Pechukas and J. C. Light, J. Chem. Phys. 44, 3897 (1966).CrossRefGoogle Scholar
  59. 35.
    H. Tal-Ezar and R. Kosloff, J. Chem. Phys. 81, 3967 (1984).CrossRefGoogle Scholar
  60. 36.
    T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).CrossRefGoogle Scholar
  61. 37.
    T. Oka, Phys. Rev. Lett 45, 531 (1980).CrossRefGoogle Scholar
  62. 38.
    J. K. G. Watson, S. C. Foster, A. R. W. McKellar, P. Bernath, T. Amano, F. S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, Can. J. Phys. 62, 1875 (1984)CrossRefGoogle Scholar
  63. W. A. Majewski, M. D. Marshall, A. R. W. McKellar, J. C. W. Johns, and J. K. G. Watson, J. Mol. Spec. 122, 341 (1987).CrossRefGoogle Scholar
  64. 39.
    B. Rehfuss, M. Bawendi, and T. Oka, private communication.Google Scholar
  65. 40.
    C. E. Dykstra and W. C. Swope, J. Chem. Phys. 70, 1 (1979).CrossRefGoogle Scholar
  66. 41.
    W. Meyer, P. Botschwina, and P. G. Burton, J. Chem. Phys. 84, 891 (1986).CrossRefGoogle Scholar
  67. 42.
    S. Miller and J. Tennyson, J. Mol. Spec. 128, 132, 530 (1988).CrossRefGoogle Scholar
  68. G. D. Carney and R. N. Porter, J. Chem. Phys. 65, 3547 (1976).CrossRefGoogle Scholar
  69. 43.
    R. T. Pack, Chem. Phys. Lett. 108, 333 (1984)CrossRefGoogle Scholar
  70. R. T. Pack and G. A. Parker, J. Chem. Phys. 87, 3888 (1987).CrossRefGoogle Scholar
  71. 44.
    F. Webster and J. C. Light, J. Chem. Phys. 85, 4744 (1986); F. Webster, Ph.D. Thesis, Univ. of Chicago, 1988.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. C. Light
    • 1
  • R. M. Whitnell
    • 1
  • T. J. Park
    • 1
  • S. E. Choi
    • 1
  1. 1.James Franck Institute, Department of ChemistryUniversity of ChicagoChicagoUSA

Personalised recommendations