Non-Stoichiometry and Defect Structure of FeO

  • J. Janowski
  • J. Nowotny
  • M. Rekas
Part of the NATO ASI Series book series (ASIC, volume 276)

Abstract

The non-stoichiometry in wustite (Fe1-yO) is considered in terms of the 4:1 cluster model. It has been shown that the ionisation degree of the cluster above 1173 K is -5. The Debye-Hückel theory is applied to determine the equilibrium constant of the cluster formation. It has been demonstrated that the cluster model is well consistent with the free partial molar enthalpy of oxygen ΔH(O2) reported for Fe1-yO.

Keywords

Equilibrium Constant Cluster Model Theoretical Dependence Ferrous Oxide Ionisation Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Rekas and M. Mrowec, Solid State Ionics 22, 185 – 197 (1987)CrossRefGoogle Scholar
  2. 2.
    M. Stoneham, Physics Today 33 [1] 34 – 42 (1980)CrossRefGoogle Scholar
  3. 3.
    C.R.A. Catlow and B.E.F. Fender, J.Phys.C 8 [20], 3267 – 3279 (1975)CrossRefGoogle Scholar
  4. 4.
    C.R.A. Catlow, B.E.F. Fender and D.G. Muxworthy, J.Phys.(Parsis), Colloq., 7 67 – 71 (1971)Google Scholar
  5. 5.
    L.S. Darken and R.W. Gurry, J.Am.Chem.Soc, 67 [8], 1398 – 1412 (1945)CrossRefGoogle Scholar
  6. 6.
    K. Hauffe and H. Pfeiffer, Z.Metall., 44, 27 – 36 (1953)Google Scholar
  7. 7.
    P. Vallet and P. Raccah, Mem.Sci.Rev.Met., 62 [1], 1 – 29 (1956)Google Scholar
  8. 8.
    B. Swaroop and J.B. Wagner, Jr., Trans. AIME, 239 [8], 1215 – 1218 (1967)Google Scholar
  9. 9.
    I. Bransky and A.Z. Hed, J.Am.Ceram.Soc., 51 [4], 231 –232 (1968)CrossRefGoogle Scholar
  10. 10.
    H.G. Sockel and H. Schmalzried, Ber.Bunsenges.Physik.Chem., 72 [7] 745 – 754 (1968)Google Scholar
  11. 11.
    B.E.F. Fender and F.D. Riley, J.Phys.Chem.Solids 30 [4], 793 – 798 (1969)CrossRefGoogle Scholar
  12. 12.
    C. Picard and M. Dodé, Bull.Soc.Chim.France [7], 2486 – 2487 (1970)Google Scholar
  13. 13.
    W.K. Chen and N.L. Peterson, J.Phys.Chem.Solids 36, 1097 – 1103 (1975)CrossRefGoogle Scholar
  14. 14.
    E. Takayama and N. Kimizuka, J.Electrochem.Soc., 127 [4], 970 –976 (1980)CrossRefGoogle Scholar
  15. 15.
    J. Nowotny and M. Rekas, J.Am.Ceram.Soc, in printGoogle Scholar
  16. 16.
    O.N. Salmon, J.Phys.Chem., 65 [3], 550 – 556 (1961)CrossRefGoogle Scholar
  17. 17.
    P. Gerdanian, J.Phys.Chem.Solids, in printGoogle Scholar
  18. 18.
    J.F. Marucco, P. Gerdanian and M. Dodé, J.Chim.Phys., France 67 [5], 914 916 (1970)Google Scholar
  19. 19.
    J.F. Marucco, P. Gerdanian and M. Dodé, ibid. J.Chim.Phys., 67 [5], 966 – 973 (1970)Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. Janowski
    • 1
  • J. Nowotny
    • 2
  • M. Rekas
    • 2
  1. 1.Academy of Mining and MetallurgyInstitute of MetallurgyKrakowPoland
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgart 80Germany

Personalised recommendations