Impedance and Voltage Relaxation Studies of the Oxygen Sensor Systems Pt/O2/YSZ, Pt/O2/TiO2 and Pt/O2/δ-Bi2O3

  • B. Leibold
  • N. Nicoloso
Part of the NATO ASI Series book series (ASIC, volume 276)

Abstract

The oxygen sensor systems Pt/O2/YSZ, Pt/O2/TiO2 and Pt/O2/δ-Bi2O3 have been investigated by impedance and voltage relaxation measurements. Mainly single crystal and thin film oxide materials were used.

In the case of single crystal YSZ, the oxygen exchange reaction involves at least two interrelated reaction steps at the Pt or YSZ interface. Dissociative adsorption and incorporation of O or O are believed to account for this behaviour. However, no final reaction model can be given on the basis of the electrochemical data. Polycrystalline TZP can be described by a barrier layer model with grain boundary layers ≪ 100 Å. Current fractal models are not suited to describe the Pt/O2/YSZ system. In this context, recent results on the CPE behaviour of the impedance and its possible fractal origin are briefly reviewed. In addition, a short introduction to impedance spectroscopy is given.

For single crystal TiO2 the surface excess conductivity follows a <inline>1</inline> dependence which indicates adsorption and incorporation of mono-atomic oxygen species like O or O. Thin polycrystalline films (300 ≤ d ≤ 104 Å) show no significant surface contribution. Probably, the surface and bulk defect structure is dominated by the same kind of defects (VO¨, Ti<Stack><Subscript>i</Subscript><Superscript>4</Superscript></Stack>), whose concentrations or mobilities appear to differ within only one order of magnitude.

In the case of Pt/O2/δ-Bi2O3, preliminary voltage relaxation studies indicate that the diffusion coefficient of the minority carriers exceeds the ionic diffusion coefficient by several orders of magnitude. This is the same behaviour as seen in the YSZ system.

Keywords

Fractal Dimension Equivalent Circuit Impedance Spectrum Solid State Ionic Constant Phase Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Impedance Spectroscopy, ed. by J.Ross Macdonald, J. Wiley, New York 1987Google Scholar
  2. 2).
    D.C. Cronemeyer, Phys. Rev. 87, 876 (1952)CrossRefGoogle Scholar
  3. 3).
    J.E. Bauerle, J.Phys.Chem.Solids 30, 2657 (1969)CrossRefGoogle Scholar
  4. 4).
    N. Bonanos, E.P. Butler and B.C.H. Steele, see ref.1, chapter 4Google Scholar
  5. 5a).
    E. Warburg, Wied.,Ann. 67, 493 (1899) andGoogle Scholar
  6. 5b).
    F. Krüger, Z.physikal. Chemie 45, 1 (1903)Google Scholar
  7. 6).
    J.E.B. Randles and K.W. Somerton, Trans.Farad.Soc. 48, 937 (1952)CrossRefGoogle Scholar
  8. 7).
    J.H. Sluyters, Rec.Trav.Chim. 79, 1092 (1960)CrossRefGoogle Scholar
  9. 8).
    J.H. Sluyters and J.C. Ohmen, Rec.Trav.Chim. 79, 1101 (1960)CrossRefGoogle Scholar
  10. 9).
    M. Sluyters-Rehbach and J.H. Sluyters, in Electroanalytical Chemistry, vol.4, ed. A.J. Bard, Marcel Dekker, New York 1970, pp. 1–127Google Scholar
  11. 10).
    R.D. Armstrong, M.F. Bell and A.A. Metcalfe, in Electrochemistry, Chemical Society Specialist Periodical Report 6, 98 (1978)Google Scholar
  12. 11a).
    S.H. Liu, Phys.Rev.Lett. 55, 529 (1985);Google Scholar
  13. 11b).
    see also T. Kaplan, L.J. Gray and S.H. Liu, Phys.Rev. B 34, 4870 (1986)Google Scholar
  14. 12a).
    L. Nyikos and T. Pajkossy, Electrochim.Acta 30, 1533 (1985)CrossRefGoogle Scholar
  15. 12b).
    L. Nyikos and T. Pajkossy and J. Electrochem.Soc. 133, 2061 (1986)CrossRefGoogle Scholar
  16. 13a).
    R. de Levie, Electrochim.Acta 8, 751 (1963)CrossRefGoogle Scholar
  17. 13b).
    and Electrochim.Acta 10, 113 (1965)Google Scholar
  18. 14).
    W. Scheider, J.Phys.Chem. 79, 127 (1975)CrossRefGoogle Scholar
  19. 15).
    J.C. Wang, J.Electrochem.Soc. 134, 1915 (1987) andCrossRefGoogle Scholar
  20. 15).
    J.C. Wang, Solid State Ionics 18&19, 224 (1986)CrossRefGoogle Scholar
  21. 16).
    N. Nicoloso et. al., 6th Int. Conf. Sol. State Ionics, Garmisch-Partenkirchen, FRG, 1987, to be published in Solid State IonicsGoogle Scholar
  22. 17).
    “Equivcrt”, a Non Linear Least Square Fit program written by B.A. Boukamp, University of Twente, Enschede, The NetherlandsGoogle Scholar
  23. 18).
    W. Weppner and H. Schubert, to be published in Advances in Ceramics 24, Science and Technology of Zirconia IIIGoogle Scholar
  24. 19).
    J. Nowotny and M. Sloma, in Surface and Near Surface Chemistry of Oxide Materials, eds. J. Nowotny and L.C. Dufour, Elsevier, Amsterdam 1988Google Scholar
  25. 20).
    N.H. Andersen et al., Physica 136B, 315 (1986)Google Scholar
  26. 21).
    L.J. Van der Pauw, Philips Res. Repts. 13, 1 (1958)Google Scholar
  27. 22).
    J.F. Marruco, J. Gautron and P. Lemasson, J.Phys.Chem.Solids 42, 363 (1981)CrossRefGoogle Scholar
  28. 23).
    W. Göpel, U. Kirner, G. Rocker and H.D. Wiemhöfer, 6th Int. Conf. Sol. State Ionics, Garmisch-Partenkirchen, FRG, 1987, to be published in Solid State IonicsGoogle Scholar
  29. 24).
    W. Weppner and R.A. Huggins, Ann.Rev.Mat.Sci. 8, 269 (1978)CrossRefGoogle Scholar
  30. 25).
    H.A. Harwig and A.G. Gerards, J.Sol.State Chem. 26, 265 (1978)CrossRefGoogle Scholar
  31. 26a).
    W. Weppner, Z.Naturforsch. 31a, 1336 (1976)Google Scholar
  32. 26b).
    W. Weppner, Electrochim. Acta 22, 721 (1977)CrossRefGoogle Scholar
  33. 27a).
    B. Sapoval, Solid State Ionics 23, 253 (1987);CrossRefGoogle Scholar
  34. 27b).
    see also Y.T. Chu, Solid State Ionics 26, 299 (1988)CrossRefGoogle Scholar
  35. 28a).
    LeMehaute, J.Stat.Phys. 36, 665 (1984)CrossRefGoogle Scholar
  36. 28b).
    LeMehaute, and Solid State Ionics 25, 99 (1987)CrossRefGoogle Scholar
  37. 29).
    M. Keddam and H. Takeneouti, C.R.Acad.Sci. 302 (Ser.II), 288 (1986)Google Scholar
  38. 30).
    J.B. Bates and Y.T. Chu, 6th Int. Conf. Sol. State Ionics, Garmisch-Partenkirchen, FRG, 1987, to be published in Solid State IonicsGoogle Scholar
  39. 31).
    L. Nyikos and T. Pajkossy, Electrochim.Acta 31, 1347 (1986)CrossRefGoogle Scholar
  40. 32).
    J.C. Wang, 6th Int. Conf. Sol. State Ionics, Garmisch-Partenkirchen, FRG, 1987, to be published in Solid State IonicsGoogle Scholar
  41. 33).
    A. Löbert and N. Nicoloso, “Oxygen Exchange Reaction of Zirconia”, (review), to be published.Google Scholar
  42. 34).
    A.J. Burggraaf et. al., Mater. Sci. Monographs 28, P. Barret and L.C. Dufour, Eds., Elsevier, Amsterdam, 1985Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • B. Leibold
    • 1
  • N. Nicoloso
    • 1
  1. 1.Max-Planck-Institut Für FestkörperforschungStuttgart 80Germany

Personalised recommendations