Influence of Chromium Segregation on the Transport Properties of Iron Monoxide

  • G. Petot-Ervas
  • H. Klimczyk
  • C. Monty
  • C. Petot
  • J. Janowski
Part of the NATO ASI Series book series (ASIC, volume 276)

Summary

The diffusion coefficients of chromium and iron in wüstite have been determined in the temperature range 800–1200°C at an O/Fe ratio of 1.05. The diffusion of chromium has been found to be two orders of magnitude lower than the diffusion of iron. Assuming matter transport via “free mobile vacancies”, a model has been developped that allows to analyse the effect of chromium on the transport properties of wüstite under chemical potential gradients. It follows that a decrease of the oxidation or reduction kinetics must be observed when wüstite is doped with chromium. This decrease is due to the difference in mobilities of chromium and iron in wüstite and to the demixing tendency of chromium when an oxygen potential gradient exists through the sample. Experimental results from the literature confirm these previsions.

Keywords

Oxygen Partial Pressure Diffusion Annealing Reduction Kinetic Chemical Potential Gradient Nonstoichiometric Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Petot-Ervas, C. Petot to be publishedGoogle Scholar
  2. 2.
    R.L. Levin, J.B. Wagner, Trans. Met. Soc. AIME, 233, 159, 1965.Google Scholar
  3. 3.
    J. Benard, Oxid. des métaux, Gauthier-Villars 1962.Google Scholar
  4. 4.
    A.V. Malik, D.P. White, Oxid. Met. 16, 339, 1981.CrossRefGoogle Scholar
  5. 5.
    Y. Ikeda, K. Nii, Oxid. Met., 12, 487, 1978.CrossRefGoogle Scholar
  6. 6.
    M. Hajduga, J. Kucera, Oxid. Met. 25, 121, 1988.CrossRefGoogle Scholar
  7. 7.
    P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in binary metal oxides, Wiley Interscience, N.Y., 1972.Google Scholar
  8. 8.
    W.K. Chen, N.L. Peterson, J. Phys. Chem. Solids, 36, 1097, 1975.CrossRefGoogle Scholar
  9. 9.
    E. Garstein, T.O. Mason, J.B. Cohen, J. Phys. Chem. Solids, 47, 759, 1986.CrossRefGoogle Scholar
  10. 10.
    R.A. Giddings, R.S. Gordon, J. Am. Cer. Soc., 56, 111, 1973.CrossRefGoogle Scholar
  11. 11.
    S.M. Tomlinson, C.R.A. Catlow, J.H. Harding, Transport in Nonstoichiometric Compounds Ed. G. Simkowitch, V.S. Stubican, Plenum Press, 539, 1985.Google Scholar
  12. 12.
    R.W. Grimes, A.B. Anderson, A.H. Heuer, J. Am. Cer. Soc. 69, 619, 1986.CrossRefGoogle Scholar
  13. 13.
    J.R. Gavarri, C. Carel, D. Weigel, Solid. St. Phys. 12, 337, 1979.CrossRefGoogle Scholar
  14. 14.
    P. Kofstad, A.Z. Hed, J. Electrochem. Soc., 115, 102, 1968.CrossRefGoogle Scholar
  15. 15.
    A. Madouri, C. Monty, Adv. in ceramics, 23, 55, 1987.Google Scholar
  16. 16.
    J. Philibert, Diffusion et Transport de Matière dans les Solides, Ed. Phys. 1985.Google Scholar
  17. 17.
    N.L. Peterson, Transport in Nonstoichiometric Compounds, Ed. G. Petot-Ervas, C. Monty, Hj. Matzke, North Holland, Sol. St Ionics, 201, 1984.Google Scholar
  18. 18.
    W. Laqua, H. Schmalzried, High Temp. Corrosion, Ed. R.A. Rapp 115, 1983.Google Scholar
  19. 19.
    P. Ochin, G. Petot-Ervas, C. Petot, J. Phys. Chem. Solids 46, 695, 1985.CrossRefGoogle Scholar
  20. 20.
    G. Petot-Ervas, C. Petot, F. Gesmundo, J. Phys. Chem. Solids 48, 767, 1987.CrossRefGoogle Scholar
  21. 21.
    C Wagner, Corr. Sci. 9, 91, 1969.CrossRefGoogle Scholar
  22. 22.
    F.H. Stott, J.S. Punni, G.C. Wood, G. Dearnaley, Transport in Nonstoichiometric Compounds, Ed. G. Simkowitch, V.S. Stubican, Plenum Press, 463, 1985.Google Scholar
  23. 23.
    G. Ben Abderrazik, Thesis University Paris XI, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • G. Petot-Ervas
    • 1
  • H. Klimczyk
    • 4
  • C. Monty
    • 3
  • C. Petot
    • 2
  • J. Janowski
    • 4
  1. 1.ISMA, Laboratoire de Métallurgie, Bât. 413Université Paris-SudOrsayFrance
  2. 2.CNRS, LIMHPUniversité Paris-NordVilletaneuseFrance
  3. 3.Laboratoire de Physique des MatériauxCNRSMeudonFrance
  4. 4.Institute of MetallurgyAcademy of Mining and MetallurgyKrakowPoland

Personalised recommendations