Non-Stoichiometric Compounds pp 363-385 | Cite as
Short-Circuit Diffusion in α-Al2O3.
Abstract
Results concerning diffusion in αAl2O3 are reviewed, compared and discussed in terms of lattice defects, purity, doping, grain-boundary structure and chemistry. Some of the difficulties encountered in determining diffusion parameters are pointed out. Attention is paid to short-circuit diffusion, as penetration in the volume of αAl2O3 is negligible in most cases. Recent data for the silver -αAl2O3 system providing all parameters relative to bulk and dislocation and grain boundary diffusion, are analysed’ to gain a better understanding of the diffusion mechanisms involved in this system and, from analogy, in cationic diffusion in α-Al2O3.
Keywords
Boundary Diffusion Bulk Diffusion Migration Energy Chemical Diffusion Oxygen Diffusion CoefficientPreview
Unable to display preview. Download preview PDF.
References
- 1.DIENES G.J., WELCH D.O., FISHER C.R., HATCHER R.D., LAZARETH D. and SAMBERG M., “Shell-model calculation of some point defect properties in α-Al2O3” — Phys. Rev. B, 11, 3060–3070, (1965)CrossRefGoogle Scholar
- 2.CATLOW C.R.R., JAMES R., MACKRODT W.C. and STEWART R.F., “Defect energies in α-Al2O3 and rutile TiO2” — Phys. Rev. B, 25, 1006–1026, (1982)CrossRefGoogle Scholar
- 3.MACKRODT W.C., “Defect energetics and their relation to non stoichiometry in oxides” — Solid State Ionics, 12, 175–188, (1984)CrossRefGoogle Scholar
- 4.EL AIAT M.M. and KROGER F.A., “Determination of the parameters of native disorder in α-Al2O3” — J. of the Am. Ceram. Soc., 65, 162–166 (1982)CrossRefGoogle Scholar
- 5.KROGER F.A., “Experimental and calculated values of defect parameters and the defect structure of -Al2O3” — Advances in Ceramics, 10, 100–118, (1984)Google Scholar
- 6.OISHI Y. and KINGERY W.D., “Self diffusion of oxygen in single crystal and polycrystalline aluminium oxide” — J. Chem. Phys., 33, 480–486, (1960)CrossRefGoogle Scholar
- 7.OISHI Y., ANDO K. and KUBOTA Y., “Self diffusion of oxygen in single crystal alumina” — J. Chem. Phys., 73, 1410–1412, (1980)CrossRefGoogle Scholar
- 8.OISHI Y., ANDO K., SUGA N. and KINGERY W.D., “Effect on surface condition on oxygen self-diffusion coefficients for single crystal A12O3” — J. Amer. Ceram. Soc., 66, C 130–131, (1983)Google Scholar
- 9.REED D.J. and WUENSCH B.J., “Ion probe measurement of oxygen self-diffusion in single crystal Al2O3” — J. Am. Ceram. Soc., 63, 88–92, (1980)CrossRefGoogle Scholar
- 10.REDDY K.P.R. and COOPER A.R., “Oxygen diffusion in Sapphire” — J. Amer. Ceram. Soc., 65, 634–638, (1982)CrossRefGoogle Scholar
- 11.LAGERLOF K.D.D., PLETKA B.J., MITCHELL T.E. and HEUER A.H., “Deformation and diffusion in sapphire” — Radiation effects, 74, 87–107, (1983)CrossRefGoogle Scholar
- 12.PALADINO A.E. and KINGERY W.D., “Aluminium ion diffusion in aluminium oxide” — J. Chem. Phys., 37, 957–962, (1962)CrossRefGoogle Scholar
- 13.CANNON R.M., RHODES W.H. and HEUER A.H., “Plastic deformation of fine grained alumina: I, Interface controlled diffusional creep” — J. Amer. Ceram. Soc., 63, 46–53, (1980)CrossRefGoogle Scholar
- 14.LESAGE B., HUNTZ A.M. and PETOT-ERVAS G., “Transport phenomena in undoped and chromium-or yttrium-doped alumina” — Radiation effects, 75, 283–299, (1983)CrossRefGoogle Scholar
- 15.BADROUR L., MOYA E.G., BERNARDINI J. and MOYA F., “Bulk diffusion of 110Ag tracer in Al2O3” — Scripta Met., 20, 1217–1222, (1986)CrossRefGoogle Scholar
- 16.OISHI Y., ANDO K. and MATSUHIRO K., “Self diffusion coefficient of oxygen in vapor-grown single crystal alumina” — Yogyo-Kyokai-Shi, 85, 54–56, (1977)Google Scholar
- 17.LAGERLOF K.P.D., MITCHELL T.E. and HEUER A.H., “Defect-dislocation interactions in sapphire (α-Al2O3)” — Solute defect interactions, Pergamon Press, Toronto Ont., 152–161, (1986)Google Scholar
- 18.HANEDA H. and MONTY C., “Oxygen self diffusion in Mg or Ti doped Al2O3 single crystals” — to be publishedGoogle Scholar
- 19.
- 20.ANDO K., KUROKAWA Y. and OISHI Y., “Oxygen self diffusion in Fedoped MgO single crystals” — J. Chem. Phys., 78, 6890–6892, (1983)CrossRefGoogle Scholar
- 21.LESAGE B., HUNTZ A.M., OCHIN P., SAADI B. and PETOT-ERVAS G., “Influence of chromium and yttrium doping on transport phenomena in monocrystalline alpha-alumina” — Solid State Ionics, 12, 243–251, (1984)CrossRefGoogle Scholar
- 22.SAADI B., PETOT-ERVAS, OCHIN D., LESAGE B., HUNTZ A.M., “Chemical diffusion in α alumina, titanium and yttrium influence” — Physical chemistry of the solid state: applications to metals and their compounds — Elsevier Science Publishers, Amsterdam, 389–395, (1984)Google Scholar
- 23.BEN ABDERRAZIK G., MILLOT F., MOULIN G. and HUNTZ A.M., “Determination of transport properties of alumina oxide scale” — J. of Am. Ceram. Soc., 68, 307–314, (1985)CrossRefGoogle Scholar
- 24.LOUDJANI M., HUNTZ A.M. and PETOT-ERVAS G., “Microstructure and transport properties of Y2O3 doped or undoped polycrystalline alumina in relation with its elaboration” — J. de Physique C1, 47, 323–328, (1986)Google Scholar
- 25.HUNTZ A.M., MOULIN G., BEN ABDERRAZIK G., “Influence des impuretés sur l’oxydation à haute température des alliages Fe-Cr-Al: propriétés de transport de la couche d’alumine” — Ann. Chim. Fr., 11, 291–307, (1986)Google Scholar
- 26.LOUDJANI M.K., ROY J. and HUNTZ A.M., “Study by extended X-ray absorption fine-structure technique and microscopy of the chemical state of yttrium in α-polycrystalline alumina” — J. Am. Ceram. Soc. 68, 559–562, (1985)CrossRefGoogle Scholar
- 27.LESAGE B., “Contribution à l’étude des mécanismes de transport dans l’oxyde de nickel NiO.et l’alumine Al2O3 alpha. Influence de dopants” — Thesis, Université Paris-Sud, centre d’Orsay (1985)Google Scholar
- 28.KORIPELLA C.R. and KROGER F.A., “Electrical conductivity, diffusion of iron and the defect structure of a-Al2O3: Fe” — J. Phys. Chem. Solids, 47, 565–576, (1986)CrossRefGoogle Scholar
- 29.LLOYD I. and BOWEN H.K., “Iron tracer diffusion in aluminium oxide” J. Amer. Ceram. Soc., 64, 744–747, (1981)CrossRefGoogle Scholar
- 30.DOSDALE T. and BROOK R.J., “Comparison of diffusion data and of activation energies” — J. of the Am. Ceram. Soc., 66, 392–395, (1983)CrossRefGoogle Scholar
- 31a.LE CLAIRE A.D. and RABINOVITCH A., “A mathematical analysis of diffusion in dislocations” — J. Phys. C: Solid State Phys., 14, 3863–3879 (1981)CrossRefGoogle Scholar
- 31b.LE CLAIRE A.D. and RABINOVITCH A., “A mathematical analysis of diffusion in dislocations” — J. Phys. C: Solid State Phys., 15, 3455–3471, (1982)CrossRefGoogle Scholar
- 31c.LE CLAIRE A.D. and RABINOVITCH A., “A mathematical analysis of diffusion in dislocations” — J. Phys. C: Solid State Phys., 16, 2087–2104, (1983)CrossRefGoogle Scholar
- 31d.LE CLAIRE A.D. and RABINOVITCH A., “A mathematical analysis of diffusion in dislocations” — J. Phys. C: Solid State Phys., 17, 991–1000, (1984)CrossRefGoogle Scholar
- 32.LE CLAIRE A.D., “The analysis of grain boundary diffusion measurements” — Brit. J. Appl. Phys., 14, 351, (1963)CrossRefGoogle Scholar
- 33.SUZUOKA T., “Exact solutions of two ideal cases in grain boundary diffusion problem and the application to sectioning method” — J. of the Phys. Soc. of Japan, 19, 839–850, (1964)CrossRefGoogle Scholar
- 34.MOYA E.G., BADROUR L., BERNARDINI J. and MOYA F., “Study of silver penetration into polycrystalline alumina” — Grain boundary structure at related phenomena, Proc. of JIMIS-4, Suppl. to Trans, of the Japan Institute of Metals, 27, 517–524, (1986)Google Scholar
- 35.BADROUR L., MOYA E.G., BERNARDINI J. and MOYA F., “Fast diffusion of silver in single and polycrystals of α-alumina” — to be publishedGoogle Scholar
- 36.MISTLER R.E. and COBLE R.L., “Grain boundary diffusion and boundary widths in metals and ceramics” — J. Appl. Phys., 45, 1507, (1974)CrossRefGoogle Scholar
- 37.LAGRANGE M.H., HUNTZ A.M., DAVIDSON J.H., “The influence of Y, Zr or Ti additions on the high temperature, oxidation resistance of Fe-Ni-Cr-Al alloys of variable purity” — Corros. Sci., 24,613,(1984)CrossRefGoogle Scholar
- 38.
- 39.HOU L.D., TIKU S.K., WANG H.A. and KROGER F.A., “Conductivity and creep in acceptor-dominated polycrystalline Al2O3” — J. of Mat. Science, 14, 1877–1889, (1979)CrossRefGoogle Scholar
- 40.EL AIAT M.M., HOU L.D., TIKU S.K., WANG H.A. and KROGER F.A., “High temperature conductivity and creep of polycrystalline Al2O3 doped with Fe and/or Ti” — J. Am. Ceram. Soc., 64, 174–182, (1987)CrossRefGoogle Scholar
- 41.WANG H.A. and KROGER F.A., “Chemical diffusion in polycrystalline Al2O3” — J. Amer. Ceram. Soc., 63, 613–619, (1980)CrossRefGoogle Scholar
- 42.STUBICAN V.C. and OSENBACH J.W., “Influence of anisotropy and doping on grain boundary diffusion in oxide systems” — Solid State Ionics, 12, 375–381, (1984)CrossRefGoogle Scholar
- 43.LAGRANGE M.H., “Rôle des additions Y, Zr, Ti sur l’oxydation à haute température d’alliages Fe-Ni-Cr-Al. Relation entre la microstructure de l’alumine dopée ou non en Y et la diffusion cationique” Thèse 3ème cycle, Université Paris XI, Orsay (1982)Google Scholar
- 44.MARCUS H.L. and FINE M.E., “Grain boundary segregation in MgO-doped Al2O3” — J. Amer. Ceram. Soc., 55, 568–570, (1972)CrossRefGoogle Scholar
- 45.JOHNSON W.C. and STEIN D.F., “Additive and impurity distributions at grain boundaries in sintered alumina” — J. Amer. Ceram. Soc. 58, 485–488, (1975)CrossRefGoogle Scholar
- 46.JUPP R.S., STEIN D.F. and SMITH D.W., “Observations on the effect of calcium segregation on the fracture behaviour of polycrystalline alumina” — J. Mater. Sci., 15, 96–102, (1980)CrossRefGoogle Scholar
- 47.HONDROS E.D. and SEAH M.P., “The theory of grain boundary segregation in terms of surface adsorption analogues” — Met. Trans. A, 8A, 1363, (1977)CrossRefGoogle Scholar
- 48.MC LEAN D., Grain boundaries in Metals, Oxford University Press, London, 118–119, (1957)Google Scholar