Statistical Thermodynamics of Non-Stoichiometric Oxides

  • G. Boureau
  • M. Benzakour
  • R. Tetot
Part of the NATO ASI Series book series (ASIC, volume 276)

Abstract

Some problems of statistical thermodynamics applied to non-stoichiometric oxides are examined: Two typical oxides, titanium monoxide and ceria, respectively metallic and ionic oxides, are used to discuss the role of short range and of long range interactions. A particular attention is paid to coulombic interactions which cannot be neglected in a number of ionic compounds. The validity of the use of the ideal mass action law as a tool of investigation is also discussed.

Keywords

Statistical Thermodynamic Short Range Interaction Cerium Dioxide Partial Molar Enthalpy Titanium Monoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.B. Alcock, ‘The control of stoichiometry in oxide systems’, This conference Google Scholar
  2. 2.
    R.Tetot, C.Picard, G.Boureau and P.Gerdanian, ‘High temperature calorimetry of metal-oxygen systems’, Advances in Ceramics, 23,455 (1987)Google Scholar
  3. 3.
    L.Atlas, ‘Statistical model of partially ordered defects in a hypostoichiometric metal oxide’, J. Phys. Chem. Solids 29, 91 (1968)CrossRefGoogle Scholar
  4. 4.
    J.Campserveux and P.Gerdanian, ‘Etude thermodynamique de l’oxyde CeO2−x pour 1.5</Ce<2’ J. Solid St. Chem. 23, 73 (1978)CrossRefGoogle Scholar
  5. 5a.
    L.Mannes, E.Partelli and C.M.Mari, ‘A new statistical thermodynamic theory for substoichiometric fluorite structure compounds and its application’, Mater. Chem. 6, 381, (1981)CrossRefGoogle Scholar
  6. 5b.
    L.Mannes, E.Partelli and C.M.Mari, ‘A new statistical thermodynamic theory for substoichiometric fluorite structure compounds and its application’, Mater. Chem. 6, 401, (1981)CrossRefGoogle Scholar
  7. 5c.
    L.Mannes, E.Partelli and C.M.Mari, ‘A new statistical thermodynamic theory for substoichiometric fluorite structure compounds and its application’, Mater. Chem. 6, 417 (1981)CrossRefGoogle Scholar
  8. 6.
    P.Kofstad ‘Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides, Wiley (1972)Google Scholar
  9. 7.
    G.Boureau and J.F.Marucco, ‘Equilibrium between point defects and crystallographic shear planes’, Radiat. Eff. 74, 247 (1983)CrossRefGoogle Scholar
  10. 8.
    G.Boureau, ‘Applications of the calculation of the configurational entropy of hydrogen in metals’, Z. fur Physik. Chemie N.F., 143, 89 (1985)Google Scholar
  11. 9.
    G.Boureau and R.Tetot, ‘Statistical thermodynamics of nonstoichiometric oxides with high defect content. A new approach’, Cryst. Latt. Def. and Amorph. Mat 16, 85 (1987)Google Scholar
  12. 10.
    L.M.Huisman, E.A.Carlsson, C.D.Gelatt and H.Ehrenreich, ‘Mechanism for energetic-vacancy stabilization: TiO and TiC’ Phys. Rev. B 22, 991 (1980)CrossRefGoogle Scholar
  13. 11.
    R.Tetot, C.Picard and P.Gerdanian, ‘Determination of oxygen partial free energfy for non-stoichiometric TiO by e.m.f. measurements’, J. Phys. Chem. Solids, 44, 1059 (1983)CrossRefGoogle Scholar
  14. 12.
    H.Schmalzried and A.Navrotsky, Festkorperthermodynamik, Verlag Chemie, Weinheim (1975)Google Scholar
  15. 13.
    D.J.Adams, ‘Computer simulation of ionic systems: The distorting effects of the boundary conditions’ Chem. Phys. Lett., 329 (1979)Google Scholar
  16. 14.
    B.Touzelin, ‘Etude par diffraction des rayons X à haute température en atmosphère controlée du système Ce-O’, J. Nucl. Mater., 101, 92 (1981)CrossRefGoogle Scholar
  17. 15.
    H.L.Tuller and A.S.Nowick, ‘Defect structure and electrical properties of nonstoichiometric CeO2 single crystals’, J. Electrochem. Soc., 126, 209 (1979)CrossRefGoogle Scholar
  18. 16.
    F.Millot and P.Gerdanian, ‘The quantitative measurement of electromigration in CeO2−x’, J. Phys. Chem. 43, 507 (1982)Google Scholar
  19. 17.
    J.B.Pendry and C.H.Hodges, ‘The quantisation of charge transport in ionic systems’ J. Phys. C, 17,1269 (1984)CrossRefGoogle Scholar
  20. 18.
    M.Benzakour, R.Tetot and G.Boureau, ‘Statistical thermodynamics of cerium dioxide’ J. Phys. Chem. Solids, 49, 381 (1988)CrossRefGoogle Scholar
  21. 19.
    D.J.Bevan and J.Kordis, “Oxygen dissociation pressures and phase relationships in the system CeO2-Ce2O3 at high temperatures’ J. Inorg. Nucl. Chem., 26, 1509 (1964)CrossRefGoogle Scholar
  22. 20.
    I.Riess, H.Janczikowski and J.Nolting, ‘O2 chemical potential of nonstoichiometric ceria, CeO2−x’ determined by a solid electrochemical method’, J. Appl. Phys., 61, 4931 (1987)CrossRefGoogle Scholar
  23. 21.
    J.W.Dawicke and R.N.Blumenthal, ‘Oxygen association pressure measurements on non-stoichiometric cerium dioxide’ J. Electrochem. Soc. 133, 904 (1986)CrossRefGoogle Scholar
  24. 22.
    C.J.Kevane, ‘Oxygen vacancies and electrical conduction in metal oxides’, Phys. Rev A, 133, 1431 (1964)CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • G. Boureau
    • 1
  • M. Benzakour
    • 1
  • R. Tetot
    • 1
  1. 1.Laboratoire des Composés non-stoechiométriquesUniversité de Paris-Sud Centre d’OrsayOrsay CedexFrance

Personalised recommendations