The Preparation and Thermal Rearrangement of Functionalized 6-(1-Alkenyl)Bicyclo[3.1.0]Hex-2-Enes. Applications to synthesis
Abstract
In connection with developing methods that would be applicable to the total synthesis of natural products such as sinularene (6), prezizaene (7), and quadrone (8), the thermolytic rearrangements of a number of substituted 6-(l-alkenyl)bicyclo[3.1.0]hex-2-enes were investigated. Upon thermolysis, compounds 9, 12, 36, 38, 42, 44, and 58 underwent clean [3,3]-sigmatropic (Cope) rearrangement to provide excellent yields of the functionalized bicyclo[3.2.1]octa-2,6-dienes 10, 15, 37, 30, 43, 45, and 59, respectively. In contrast, substances 29, 46, and 55 proved to be very poor substrates for Cope rearrangement. Thus, heating of these materials gave low yields or none of the corresponding Cope rearrangement products 30, 47, and 56, respectively.
Keywords
Total Synthesis Allylic Alcohol Thermal Rearrangement Proton Nuclear Magnetic Resonance Spectroscopy Ethyl DiazoacetatePreview
Unable to display preview. Download preview PDF.
REFERENCES
- 1.C. Cupas, W.E. Watts, and P. von R. Schleyer, Tetrahedron Lett. 2503 (1964).Google Scholar
- 2.J.M. Brown, Chem. Commun. 226 (1965).Google Scholar
- 3.S.J. Rhoads and N.R. Raulins, Org. React. 22, 1 (1975).Google Scholar
- 4.E.M. Mil’vitskaya, A.V. Tarakanova, and A.V. Plate, Russ. Chem. Rev. 45, 469 (1976).CrossRefGoogle Scholar
- 5.J.J. Gajewski, Hydrocarbon Thermal Isomerizations. Academic Press, Inc., New York, NY, 1981, pp. 215–216, 258-260.Google Scholar
- 6.J.E. Baldwin and K.E. Gilbert, J. Am. Chem. Soc. 98, 8283 (1976).CrossRefGoogle Scholar
- 7.C.M. Beechan, C. Djerassi, J.S. Finer, and J. Clardy, Tetrahedron Lett. 2395 (1977).Google Scholar
- 8.E. Piers, G.L. Jung, and E.H. Ruediger, Can. J. Chem. 65, 670 (1987).CrossRefGoogle Scholar
- 9.E. Piers and G.L. Jung, Can. J. Chem. 65, 1668 (1987).CrossRefGoogle Scholar
- 10.C.W. Spangler, Chem. Rev. 76, 187 (1976).CrossRefGoogle Scholar
- 11.R.J. Ellis and H.M. Frey, J. Chem. Soc. 5578 (1964).Google Scholar
- 12.W. Pickenhagen, F. Naf, G. Ohloff, P. Muller, and J.-C. Perlberger, Helv. Chim. Acta. 56, 1868 (1973).CrossRefGoogle Scholar
- 13.Y. Ito, T. Hirao, and T. Saegusa, J. Org. Chem. 43, 1011 (1978).CrossRefGoogle Scholar
- 14.P.J. Carrol, E.L. Ghisalberti, and D.E. Ralph, Phytochemistry. 15, 777 (1976).CrossRefGoogle Scholar
- 15.E. Piers and P.S. Marrs, Unpublished work.Google Scholar
- 16.D. Seyferth, R.L. Lambert, Jr., and M. Massol, J. Organomet. Chem. 88, 255 (1975).CrossRefGoogle Scholar
- 17.E. Piers, M. Jean, and P.S. Marrs, Tetrahedron Lett. 28, 5075 (1987).CrossRefGoogle Scholar
- 18.P.K. Freeman and L.L. Hutchinson, J. Org. Chem. 48, 4705 (1983).CrossRefGoogle Scholar
- 19.R.L. Ranieri and G.J. Calton, Tetrahedron Lett. 499 (1978); G.J. Calton, R.L. Ranieri, and M.A. Espenshade, J. Antibiot. 31, 38 (1978); K. Kon, K. Ito, and S. Isoe, Tetrahedron Lett. 25, 3739 (1984).Google Scholar
- 20.E. Piers, G.L. Jung, and N. Moss, Tetrahedron Lett. 25, 3959 (1984).CrossRefGoogle Scholar
- 21.E. Piers and N. Moss, Unpublished work.Google Scholar
- 22.S. Burke, C.W. Murtiashaw, J.O. Saunders, J.A. Oplinger, and M.S. Dike, J. Am. Chem. Soc. 106, 4558 (1984).CrossRefGoogle Scholar
- 23.E. Piers and N. Moss, Tetrahedron Lett. 26, 2735 (1985).CrossRefGoogle Scholar