Advertisement

Isolation and properties of Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants

  • K. Michiels
  • J. Vanderleyden
  • A. Van Gool
  • E. R. Signer
Chapter
Part of the Developments in Plant and Soil Sciences book series (DPSS, volume 35)

Abstract

Polysaccharide production by Azospirillum strains was indicated by fluorescence on growth media containing calcofluor. Mutants showing decreased and increased levels of fluorescence were obtained from A. lipoferum strain Sp59b by chemical mutagenesis, and from A. brasilense strain 7030 by Tn5 mutagenesis. One class of calcofluor dark mutants from 7030 synthesized an exopolysaccharide (EPS) probably different in composition from the parent EPS. However, not EPS, but an unidentified component seemed to determine the fluorescence phenotype. Another class of 7030 mutants could be complemented to wild type fluorescence with a cosmid bank.

Key words

Azospirillum calcofluor complementation EPS Rhizobium meliloti surface polysaccharide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldani VLD, Alvarez MA de B, Baldani JI and Döbereiner J 1986 Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant and Soil 90, 35–46.CrossRefGoogle Scholar
  2. Cangelosi GA, Hung L, Puvanesarajah V, Stacey G, Orga DA, Leigh J A and Nester EW 1987 Common loci for exopolysaccharide synthesis in Agrobacterium tumefaciens and Rhizobium meliloti, and their role in plant interactions. J. Bacteriol. 169, 2086–2091.PubMedGoogle Scholar
  3. Chilton M-D, Tepfer DA, Petit A, David C, Casse-Delbart F and Tempe J 1982 Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295, 432–434.CrossRefGoogle Scholar
  4. Dische Z 1962 In Methods in Carbohydrate Chemistry. Eds. RL Whistler and ML Wolfrom. 1, 477–479.Google Scholar
  5. Doetsch RN 1981 Determinative methods of light microscopy. In Manual of Methods for General Bacteriology. Eds. P Gerhardt et al. American Society for Microbiology, Washington, D.C.Google Scholar
  6. Douglas CJ, Halperin W and Nester EW 1982 Agrobacterium tumefaciens mutants affected in attachment to plant cells. J. Bacteriol. 152, 1265–1275.PubMedGoogle Scholar
  7. Douglas CJ, Staneloni RJ, Rubin RA and Nester EW 1985 Identification and genetic analysis of an Agrobacterium tumefaciens chromosomal virulence region. J. Bacteriol. 161, 850–860.PubMedGoogle Scholar
  8. Dylan T, Ielpi L, Stanfield S, Kashyap L, Douglas C, Yanofsky M, Nester E, Helinski DR and Ditta G 1986 Rhizobium meliloti genes required for nodule development are related to chromosomal virulence genes in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA 83, 4403–4407.PubMedCrossRefGoogle Scholar
  9. Elmerich C 1984 Molecular biology and ecology of diazotrophs associated with non-leguminous plants. Bio/Technology 2, 967–978.CrossRefGoogle Scholar
  10. Eyers M, Waelkens F, Vanderleyden J and Van Gool A 1987 Quantitative measurement of Azospirillum plant cell attachment. In Azospirillum IV: Genetics, Physiology, Ecology. Ed. W. Klingmüller. pp 174–180. Springer-Verlag, Heidelberg.Google Scholar
  11. Finan TM, Hirsch AM, Leigh J A, Johansen E, Kuldau GA, Deegan S, Walker GC and Signer ER 1985 Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40, 869–877.PubMedCrossRefGoogle Scholar
  12. Franche C and Elmerich C 1981 Physiological properties and plasmid content of several strains of Azospirillum brasilense and Azospirillum lipoferum. Ann. Inst. Pasteur 132A, 3–18.Google Scholar
  13. Fogher C, Dusha I, Barbot P and Elmerich C 1985 Heterologous hybridization of Azospirillum DNA to Rhizobium nod and fix genes. FEMS Microbiol. Letters 30, 245–249.Google Scholar
  14. Friedman AM, Long SR, Brown SE, Buikema WJ and Ausubel FM 1982 Construction of a broad host range cloning vector and its use in the genetic analysis of Rhizobium mutants. Gene 18, 289–296.PubMedCrossRefGoogle Scholar
  15. Jain DK and Patriquin DG 1984 Root hair deformation, bacterial attachment and plant growth in wheat-Azospirillum associations. Appl. Environm. Microbiol. 48, 1208–1213.Google Scholar
  16. Kapulnik Y, Okon Y and Henis Y 1985 Changes in root morphology of wheat caused by Azospirillum inoculation. Can. J. Microbiol. 31, 881–887.CrossRefGoogle Scholar
  17. Leigh JA, Signer ER and Walker GC 1985 Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules. Proc. Nat. Acad. Sci USA 82, 6231–8730.PubMedCrossRefGoogle Scholar
  18. Maniatis T, Fritsch EF and Sambrook J 1982 Molecular Cloning. A Laboratory Manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  19. Matthyse AG 1983 Role of bacterial cellulose fibrils in Agrobacterium tumefaciens infection. J. Bacteriol. 154, 906–915.Google Scholar
  20. Matthysse AG 1987 Characterization of nonattaching mutants of Agrobacterium tumefaciens. J. Bacteriol. 169, 313–323.PubMedGoogle Scholar
  21. Miller JH 1972 Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  22. Nester EW, Gordon MP, Amasino RM and Yanofsky MF 1984 Crown gall: A molecular and physiological analysis. Annu. Rev. Plant Physiol. 35, 387–413.CrossRefGoogle Scholar
  23. Okon Y 1985 Azospirillum as a potential inoculant for agriculture. Trends in Biotechnology 3, 223–228.CrossRefGoogle Scholar
  24. Sadasivan L and Neyra CA 1985 Flocculation in Azospirillum brasilense and Azospirillum lipoferum: exopolysaccharides and cystformation. J. Bacteriol. 163, 716–723.PubMedGoogle Scholar
  25. Singh M and Klingmüller W 1986 Transposon mutagenesis in Azospirillum brasilense: isolation of auxotrophic and nif mutants and molecular cloning of the mutagenized nif DNA. Mol. Gen. Genet. 202, 136–142.Google Scholar
  26. Thomashow MF, Karlinsey JE, Marks JR and Hurlbert RE 1987 Identification of a new virulence locus in Agrobacterium tumefaciens that affects polysaccharide composition and plant cell attachment. J. Bacteriol. 169, 3209–3216.PubMedGoogle Scholar
  27. Vanstockem M, Michiels K, Vanderleyden J and Van Gool A 1987 Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: Physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl. Environm. Microbiol. 53, 410–415.Google Scholar
  28. Vanstockem M, Milcamps A, Michiels K and Vanderleyden J 1988 Tn5 mutagenesis in Azospirillum brasilense. In Azospirillum IV: Genetics, Physiology, Ecology. Ed. W. Klingmüller. pp 32–39. Springer-Verlag, Heidelberg.Google Scholar
  29. Verma DPS and Long S 1983 The molecular biology of Rhizobium legume symbiosis. Int. Rev. Cytol. 14 (Suppl), 211–245.Google Scholar
  30. Waelkens F, Maris M, Verreth C, Vanderleyden J and Van Gool A 1987 FEMS Microbiol. Letters 43, 241–246.CrossRefGoogle Scholar
  31. Wood PJ and Fulcher RG 1978 Interaction of some dyes with cereal β-glucans. Cereal Chem. 55, 952–966.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • K. Michiels
    • 1
  • J. Vanderleyden
    • 1
  • A. Van Gool
    • 1
  • E. R. Signer
    • 2
  1. 1.F.A. Janssens Memorial Laboratory for GeneticsHeverleeBelgium
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations