Presentation of Bacterial Antigens to T Lymphocytes

  • J. A. Goodacre
Part of the New Clinical Applications Rheumatology book series (NCRH, volume 2)

Abstract

T lymphocytes use specific receptors to recognize short linear peptide antigens associated with ‘self’ MHC-encoded molecules on the surface membranes of antigen presenting cells (APC). In comparison B lymphocytes bind specifically free antigen using cell surface immunoglobulin, and antibodies usually recognise configurational epitopes. Besides the recognition of antigen other signals, mediated by accessory molecules and cytokines, may be needed for T cell activation to occur. T lymphocytes can be divided into at least two major subsets on the basis of their function, namely helper T lymphocytes, which facilitate the differentiation of B lymphocytes into antibody-secreting cells, and cytotoxic T lymphocytes which lyse infected cells. Much controversy continues to surround the possible existence of suppressor T lymphocytes as a separate subset. The activation of antigen-specific helper T lymphocytes is a fundamental step in the induction of immune responses. Until recently the mechanisms of antigen presentation had been studied only using experimental protein antigens, such as ovalbumin, but there is now increasing interest in the induction of T lymphocyte responses to bacterial antigens. These mechanisms may be relevant in two ways to the pathogenesis of arthritis. Firstly, in infective arthritis bacteria may be isolated from synovial fluid.

Keywords

Major Histocompatibility Complex Major Histocompatibility Complex Class Cell Epitope Major Histocompatibility Complex Molecule Bacterial Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, I. R., Holoshitz, J., van Eden, W. and Frenkel, A. (1985). T lymphocyte clones illuminate pathogenesis and affect therapy of experimental arthritis. Arthritis Rheum., 28, 841PubMedCrossRefGoogle Scholar
  2. 2.
    Schwartz, R. H. (1986). Immune Response (Ir) genes of the murine Major Histocompatibility Complex. Adv. Immunol. 38, 31PubMedCrossRefGoogle Scholar
  3. 3.
    De Vries, R. R. P. (1988). Immunogenetics: HLA and arthritis. In Goodacre, J. and Carson Dick, W. (eds) Immunopathogenetic Mechanisms of Arthritis. (Lancaster: MTP Press Ltd.)Google Scholar
  4. 4.
    Dobberstein, B., Kvist, S. and Roberts, L. (1982). Structure and biosynthesis of histocompatibility antigens. Phil. Trans. R. Soc. Lond. B300, 161Google Scholar
  5. 5.
    Kaufman, J. F., Auffray, C., Korman, A. J., Shackleford, D. A. and Strominger, J. (1984). The class II molecules of the human and murine Major Histocompatibility Complex. Cell, 36, 1PubMedCrossRefGoogle Scholar
  6. 6.
    Rosenthal, A. S. and Shevach, E. M. (1973). Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and T lymphocytes. J. Exp. Med., 138, 1194.PubMedCrossRefGoogle Scholar
  7. 7.
    Zinkernagel, R. M. and Doherty, P. C. (1974). Antigen recognised by altered self. Nature, 248, 701PubMedCrossRefGoogle Scholar
  8. 8.
    Heber-Katz, E., Schwartz, R. H., Matis, L. A., Hannum, C., Fairwell, T., Appella, E. and Hansburg, D. (1982). Contribution of antigen presenting cell major histocompatibility complex gene products to the specificity of antigen induced T cell activation. J. Exp. Med. 155, 1086PubMedCrossRefGoogle Scholar
  9. 9.
    Babbitt, B. P., Allen, P., Matsueda, G., Haber, E. and Unanue, E. R. (1985). Binding of immunogenic peptides to la histocompatibility molecules. Nature, 317, 359PubMedCrossRefGoogle Scholar
  10. 10.
    Buus, S., Sette, A., Colon, S., Miles, C. and Grey, H. M. (1987). The relation between major histocompatibility complex (MHC) restriction and the capacity of la to bind immunogenic peptides. Science, 235, 1353PubMedCrossRefGoogle Scholar
  11. 11.
    Dembic, Z., Haas, W., Weiss, S., McCubrey, J., Kiefer, H., von Boehmer, H. and Steinmetz, M. (1986). Transfer of specificity by murine α and β T-cell receptor genes. Nature 320, 232PubMedCrossRefGoogle Scholar
  12. 12.
    Allen, P., Matsueda, G. R., Evans, R. J., Dunbar, J. B. Jr., Marshall, G. R. and Unanue, E. R. (1987). Identification of the T cell and la contact residues of a T cell antigenic epitope. Nature, 321, 713CrossRefGoogle Scholar
  13. 13.
    Sette, A., Buus, S., Colon, S., Smith, J. A., Miles, C. and Grey, H. M. (1987). Structural characteristics of an antigen required for its interaction with la and recognition by T cells. Nature, 328, 395PubMedCrossRefGoogle Scholar
  14. 14.
    Bjorkman, P. J., Saper, M. A., Samraoui, B., Bennett, W. S., Strominger, J. L. and Wiley, D. C. (1987). Structure of the human class I histocompatibility antigen, HLA-A2. Nature, 329, 506PubMedCrossRefGoogle Scholar
  15. 15.
    Brown, J. H., Jardetzky, T., Saper, M. A., Samraoui, B., Bjorkman, P. J. and Wiley, D. C. (1988). A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature, 332, 845PubMedCrossRefGoogle Scholar
  16. 16.
    Delisi, C. and Berzofsky, J. A. (1985). T cell antigenic sites tend to be amphipathic structures Proc. Natl. Acad. Sci. USA, 82, 7048PubMedCrossRefGoogle Scholar
  17. 17.
    Rothbard, J. B. and Taylor, W. R. (1988). A sequence pattern common to T cell epitopes. EMBO J., 7, 93PubMedGoogle Scholar
  18. 18.
    Regnier-Vigouroux, A., Blanc, D., Pont, S., Marchetto, S. and Pierres, M. (1986). Accessory molecules and T cell activation. I. Antigen receptor avidity differentially influences T cell sensitivity to inhibition by monoclonal antibodies to LFA-1 and L3T4. Eur. J. Immunol., 16, 1385PubMedCrossRefGoogle Scholar
  19. 19.
    Breitmeyer, J. B. (1987). How T cells communicate. Nature, 329, 760PubMedCrossRefGoogle Scholar
  20. 20.
    Meuer, S. C., Hussey, R. E., Fabbi, M., Fox, D. A., Acuto, O., Fitzgerald, K. A., Hodgson, J. C., Protends, J. P., Schlossman, S. F. and Reinherz, E. L. (1984). An alternative pathway of T cell activation: a functional role for the 50 kd T11 sheep erythrocyte receptor protein J. Exp. Med., 36, 897Google Scholar
  21. 21.
    Saizawa, K., Rojo, J. and Janeway Jr, C. A. (1987). Evidence for a physical association of CD4 and CD3:α:β T cell receptor. Nature, 328, 260PubMedCrossRefGoogle Scholar
  22. 22.
    Dinarello, C. A., Cannon, J. G., Mier, J. W., Bernheim, H. A., Lopreste, G., Lynn, D. L., Love, R. N., Webb, A. C., Auron, P. E., Reuben, R. C., Rich, A., Wolff, S. M. and Putney, S. D. (1986). Multiple biological activities of human recombinant interleukin 1. J. Clin. Invest., 77, 1734PubMedCrossRefGoogle Scholar
  23. 23.
    Houssiau, F. A., Coulie, P. G., Olive, D. and Van Snick, J. (1988). Synergistic activation of human T cells by interleukin 1 and interleukin 6. Eur. J. Immunol., 18, 653PubMedCrossRefGoogle Scholar
  24. 24.
    Ziegler, H. J. and Unanue, E. R. (1981). Identification of a macrophage antigen processing event required for I-region restricted antigen presentation to T lymphocytes. J. Immunol., 127, 1869PubMedGoogle Scholar
  25. 25.
    Shimonkevitz, R., Kappler, J., Marrack, P. and Grey, H. (1983). Antigen recognition by H-2 restricted T cells. I. Cell-free antigen processing. J. Exp. Med., 158, 303PubMedCrossRefGoogle Scholar
  26. 26.
    Streicher, H. Z., Berkower, I. J., Busch, M., Gurd, F. R. N. and Berzofsky, J. A. (1984). Antigen conformation determines processing requirements for cell activation. Proc. Natl. Acad. Sci. USA. 81, 6831PubMedCrossRefGoogle Scholar
  27. 27.
    Buus, S. and Werdelin, O. (1986). Oligopeptide antigens of the angiotensin lineage compete for presentation by paraformaldehyde-treated accessory cells to T cells. J. Immunol., 136, 459PubMedGoogle Scholar
  28. 28.
    Walden, P., Nagy, Z. A. and Klein, J. (1986). Antigen presentation by liposomes: inhibition with antibodies. Eur. J. Immunol., 16, 717PubMedCrossRefGoogle Scholar
  29. 29.
    Townsend, A. E. M., Gotch, F. M. and Davey, J. (1985). Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell, 42, 457PubMedCrossRefGoogle Scholar
  30. 30.
    Hirschberg, H., Bergh, O. J. and Thorsby, E. (1980). Antigen presenting properties of human vascular endothelial cells. J. Exp. Med., 152, 249CrossRefGoogle Scholar
  31. 31.
    Steinman, R. M., and Cohn, Z. A. (1973). Identification of a novel cell type in peripheral lymphoid organs in mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med., 137, 1142PubMedCrossRefGoogle Scholar
  32. 32.
    Austyn, J. M. (1987). Lymphoid dendritic cells. Immunology, 62, 161PubMedGoogle Scholar
  33. 33.
    Guidos, C., Sinha, A. A. and Lee K-C. (1987). Functional differences and complementation between dendritic cells and macrophages in T cell activation. Immunology, 61, 269PubMedGoogle Scholar
  34. 34.
    Macatonia, S. E., Knight, S. C., Edwards, A. J., Griffiths, S. and Fryer, P. (1987). Localisation of antigen on lymph node dendritic cells following exposure to the contact sensitizer fluorescein isothiocyanate. J. Exp. Med. 166, 1654PubMedCrossRefGoogle Scholar
  35. 35.
    Harding, B. and Knight, S. C. (1986). The distribution of dendritic cells in the synovial fluids of patients with arthritis. Clin. Exp. Immunol., 63, 594PubMedGoogle Scholar
  36. 36.
    Birbeck, M. S., Breathnach, A. S. and Everall, J. D. (1961). An electron microscope study of basal melanocytes and high level clear cells (Langerhans cells) in vitiligo. J. Invest. Dermatol., 37, 51Google Scholar
  37. 37.
    Murphy, G. F., Bhan, A. K., Sato, S., Harrist, T. J. and Mihm, M. C. (1981). Characterisation of Langerhans cells by the use of monoclonal antibodies. Lab. Invest., 45, 465PubMedGoogle Scholar
  38. 38.
    Drexhage, H. A., Mullink, H., De Groot, J., Clarke, J. and Balfour, B. M. (1979). A study of cells present in peripheral lymph of pigs with special reference to a type of cell resembling the Langerhans cell. Cell Tissue Res., 202, 407PubMedCrossRefGoogle Scholar
  39. 39.
    Kamperdijk, E. W. A., Kapsenberg, M. L., Van den Berg M. and Hoefsmit, E. C. M. (1985). Characterisation of dendritic cells isolated from normal and stimulated rat lymph nodes. Cell Tissue Res., 242, 469PubMedCrossRefGoogle Scholar
  40. 40.
    Lanzavecchia, A. (1985). Antigen-specific interaction between T and B cells. Nature, 314, 537PubMedCrossRefGoogle Scholar
  41. 41.
    Unanue, E. R. (1972). The regulatory role of macrophages in antigenic stimulation. Adv. Immunol., 15, 95PubMedCrossRefGoogle Scholar
  42. 42.
    Lanzavecchia, A., Roosnek, E., Gregory, T., Berman, P. and Abrignani, S. (1988). T cells can present antigens such as HIV gpl20 targeted to their own surface molecules. Nature, 334, 530PubMedCrossRefGoogle Scholar
  43. 43.
    Kaye, P. M., Chain, B. M. and Feldmann, M. (1985). Non-phagocytic dendritic cells are effective accessory cells for anti-mycobacterial responses in vitro. J. Immunol., 3, 1930Google Scholar
  44. 44.
    Pearson, C. M. (1956). Development of arthritis, periarthritis and periostitis in rats given adjuvants. Proc. Soc. Exp. Biol. Med. 91, 95PubMedGoogle Scholar
  45. 45.
    Ebringer, R. (1979). Spondylarthritis and the post-infectious syndromes. Rheumatol. Rehab., 18, 218CrossRefGoogle Scholar
  46. 46.
    Van Eden W., Thole, J. E. R., van der Zee, R., Noordzij, A., van Embden, J. D. A., Hensen, E. J. and Cohen, I. R. (1988). Cloning of the mycobacterial epitope recognised by T lymphocytes in adjuvant arthritis. Nature, 331, 171PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • J. A. Goodacre

There are no affiliations available

Personalised recommendations