Abstract

The transport of food from the oesophagus to the anal canal is dependent on the motility of the gut. This motility is dependent on the integrated function of several physiological units. These include enteric and extrinsic autonomic nerves, mechano- and chemo-receptors, sensory nerves and hormonal status, as well as intrinsic properties of the smooth muscles themselves. An increasing amount of evidence points to the importance of regulatory peptides in all these instances. Previous chapters of this book have described several of the peptides individually; the aim of this chapter is to summarize briefly the integrated functions of the peptides and other regulatory substances in maintaining the complicated tasks of gut motility control. Detailed recent reviews on mammals are available for further reading in e.g. Johnson (1987). For a review of comparative studies including non-mammalian vertebrates the reader is referred to Nilsson (1983).

Keywords

Vasoactive Intestinal Peptide Vasoactive Intestinal Polypeptide Longitudinal Muscle Enteric Nervous System Circular Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abrahamsson, H. (1973) Studies of the inhibitory nervous control of gastric motility. Acta Physiol Scand., Vol 88 Suppl., 390, 1–38.Google Scholar
  2. Adachi, H., Toda, N., Hayashi, S., Noguchi, M., Suzuki, T., Torizuka, K., Yajima, H. and Koyama, K. (1981) Mechanism of the excitatory action of motilin on isolated rabbit intestine. Gastroenterology, 80, 783–8.Google Scholar
  3. Amara, S.G., Jones, V., Rosenfeld, M.G., Ong, E.S. and Evans, R.M. (1982) Alternative RNA processing in calcitonin gene expression generate mRNA encoding different polypeptide products. Nature, Lond., 298, 240–4.Google Scholar
  4. BarthÓ, L. and Holzer, P. (1985) Commentary. Search for a physiological role of substance P in gastrointestinal motility. Neuroscience, 16, 1–32.Google Scholar
  5. BarthÓ, L., Lembeck, F. and Holzer, P. (1987) Calcitonin gene-related peptide is a potent relaxant of intestinal muscle. Eur. J. Pharmacol, 135, 449–51.Google Scholar
  6. Bjenning, C. and Holmgren, S. (1988) Neuropeptides in the fish gut. An immunohistochemical study of evolutionary patterns. Histochemistry, 88, 155–63.Google Scholar
  7. Brown, J., Mutt, V. and Dryburgh, J. (1971) The further purification of motilin, a gastric motor activity stimulating polypeptide from the mucosa of the small intestine of hogs. Can. J. Physiol. Pharmacol., 49, 399–405.Google Scholar
  8. Buchan, A.M.J, and Barber, D.L. (1987) Neurotensin-containing neurons in the canine enteric innervation. Neurosci. Lett., 76, 13–17.Google Scholar
  9. Burnstock, G. (1981) Review lecture: neurotransmitters and trophic factors in the autonomic nervous system. J. Physiol (Lond.), 313, 1–35.Google Scholar
  10. Campbell, G. (1975) Inhibitory vagal innervation of the stomach in fish. Comp. Biochem. Physiol, 50C, 169–70.Google Scholar
  11. Caprilli, R., Melchiorri, P., Improta, G., Vernia, P. and Frieri, G. (1975) Effects of bombesin and bombesin-like peptides on gastrointestinal myoelectric activity. Gastroenterology, 68, 1228–35.Google Scholar
  12. Chey, M.J., Hitanant, S. and Hendricks, J. (1970) Effect of secretin and cholecystokinin on gastric emptying and gastric secretion in man. Gastroenterology, 58, 820–7.Google Scholar
  13. Clague, J.R., Sternini, C. and Brecha, N.C. (1985) Localization of calcitonin gene-related peptide-like immunoreactivity in neurons of the rat gastrointestinal tract. Neurosci. Lett., 56, 63–8.Google Scholar
  14. Cooke, A.R., Athey, G.R. and Wood, J.D. (1979) Synaptic activation of burst-type myenteric neurons in cat small intestine. Fed. Proc., 28, 959.Google Scholar
  15. Cooke, A.R., Chvasta, T.E. and Weisbrodt, N.W. (1972) Effect of pentagastrin on emptying and electrical and motor activity of the dog stomach. Am. J. Physiol, 223, 934–8.Google Scholar
  16. Costa, M. and Furness, J.B. (1976) The peristaltic reflex: an analysis of the nerve pathways and their pharmacology. Naunyn-Schmiedebergs Arch. Pharmacol., 294, 47–60Google Scholar
  17. Costa, M. and Furness, J.B. (1983) The origins, pathways and terminations of neurons with VIP-like immunoreactivity in the guinea-pig small intestine. Neuroscience, 8, 665–76.Google Scholar
  18. Costa, M., Furness, J.B. and Humphreys, C.M.S. (1986) Apamin distinguishes two types of relaxation mediated by enteric nerves in the guinea-pig gastrointestinal tract. Naunyn-Schmiedebergs Arch. Pharmacol., 332, 79–88.Google Scholar
  19. Costa, M., Furness, J.B. and Llewellyn-Smith, I.J. (1987) Histochemistry of the enteric nervous system. In Physiology of the Gastrointestinal Tract (ed. L.R. Johnson), Raven Press, New York, pp. 1–40.Google Scholar
  20. Costa, M., Furness, J.B. Llewellyn-Smith, I.J. and Cuello, A.C. (1981) Projections of substance P-containing neurons within the guinea-pig small intestine. Neuroscience, 6, 411–24.Google Scholar
  21. Costa, M., Furness, J.B., Llewellyn-Smith, I.J., Davies, B. and Oliver, J. (1980) An immunohistochemical study of the projections of somatostatin-containing neurons in the guinea-pig intestine. Neuroscience, 5, 841–52.Google Scholar
  22. Costa, M., Furness, J.B., Yanaihara, N., Yanaihara, C. and Moody, T.W. (1984) Distributions and projections of neurons with immunoreactivity for gastrin-releasing peptide and bombesin in the guinea-pig small intestine. Cell Tissue Res., 235, 285–93.Google Scholar
  23. Debas, H.T., Farooq, O. and Grossman, M.I. (1975) Inhibition of gastric emptying is a physiological action of cholecystokinin. Gastroenterology, 68, 1211–17.Google Scholar
  24. Debas, H.T., Yamagishi, Y. and Dryburgh, J.R. (1977) Motilin enhances gastric emptying of liquids in dogs. Gastroenterology, 73, 777–82.Google Scholar
  25. Delbro, D., Fandriks, L., Rosell, S. and Folkers, K. (1983) Inhibition of antidromically induced stimulation of gastric motility by substance P receptor blockade. Acta Physiol. Scand., 118, 309–16.Google Scholar
  26. Edin, R. (1980) The vagal control of the pyloric motor function. Acta Physiol. Scand., Suppl. 485, 1–30.Google Scholar
  27. Ekblad, E., Ekman, R., Håkanson, R. and Sundler, F. (1984a) GRP neurons in the rat small intestine issue long anal projections. Regul. Pept., 9, 279–87.Google Scholar
  28. Ekblad, E., Håkanson, R. and Sundler, F. (1984b) VIP and PHI coexist with an NPY-like peptide in intramural neurones of the small intestine. Regul. Pept., 10, 47–55.Google Scholar
  29. Ekblad, E., Håkanson, R., Sundler, F. and Wahlestedt, C. (1985b) Galanin: neuromodulatory and direct contractile effects on smooth muscle preparations. Br. J. Pharmacol., 86, 241–6.Google Scholar
  30. Ekblad, E., RÖkaeus, Å., Håkanson, R. and Sundler, F. (1985a) Galanin nerve fibres in the rat gut: distribution, origin and projections. Neuroscience, 16, 355–63.Google Scholar
  31. Ekblad, E., Winther, C., Ekman, R., Håkanson, R. and Sundler, F. (1987) Projections of peptide-containing neurons in the rat small intestine. Neuroscience, 20, 169–88.Google Scholar
  32. Fahrenkrug, J., Haglund, U., Jodal, M., Lundgren, O., Olbe, L. and Schaffalitzky de Muckadell, O.B. (1978) Nervous release of vasoactive intestinal polypeptide in the gastrointestinal tract of cats: possible physiological implications. J. Physiol. (Lond.), 284, 291–305.Google Scholar
  33. Fara, J. W., Praissman, M. and Berkowitz, J.W. (1979) Interaction between gastrin, CCK and secretin on canine antral smooth muscle in vitro. Am. J. Physiol., 236, E39–44.Google Scholar
  34. Furness, J.B. and Costa, M. (1974) The adrenergic innervation of the gastro-intestinal tract. Ergebn. Physiol. Biol. Chem. Exp. Pharmacol., 69, 1–51.Google Scholar
  35. Furness, J.B. and Costa, M. (1979a) Projections of intestinal neurons showing immunoreactivity for vasoactive intestinal polypeptide are consistent with these neurons being the enteric inhibitory neurons. Neurosci. Lett., 15, 199–204.Google Scholar
  36. Furness, J.B. and Costa, M. (1979b) Actions of somatostatin on excitatory and inhibitory nerves in the intestine. Eur. J. Pharmacol., 56, 69–74.Google Scholar
  37. Furness, J.B. and Costa, M. (1980) Types of nerves in the enteric nervous system. Neuroscience, 5, 1–20.Google Scholar
  38. Furness, J.B. and Costa, M. (1982) Neurons with 5-hydroxytryptamine-like immunoreactivity in the enteric nervous system: their projections in the guinea-pig small intestine. Neuroscience., 7, 341–9.Google Scholar
  39. Furness, J.B., Costa, M., Emson, P.C., Hákanson, R., Moghimzadeh, E., Sundler, F., Taylor, I.L. and Chance, R.E. (1983a) Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res., 234, 71–92.Google Scholar
  40. Furness, J.B., Costa, M., Franco, R. and Llewellyn-Smith, I J. (1980) Neuronal peptides in the intestine: distribution and possible functions. In Neural Peptides and Neuronal Communication (eds E. Costa and M. Trabucci), Raven Press, New York, pp. 601–17.Google Scholar
  41. Furness, J.B., Costa, M., Gibbins, I.L., Llewellyn-Smith, I.J. and Oliver, J.R. (1985) Neurochemically similar myenteric and submucuous neurons directly traced to the mucosa of the small intestine. Cell Tissue Res., 241, 155–63.Google Scholar
  42. Furness, J.B., Costa, M. and Miller, R.J. (1983b) Distribution and projections of nerves with enkephalin-like immunoreactivity in the guinea-pig small intestine. Neuroscience, 8, 653–64.Google Scholar
  43. Furness, J.B., Costa, M., Rökaeus, Å., McDonald, T.J. and Brooks, B. (1987) Galanin-immunoreactive neurons in the guinea-pig small intestine: their projections and relationship to other enteric neurons. Cell Tissue Res., 250, 607–15.Google Scholar
  44. Gabella, G. (1987) Structure of muscles and nerves in the gastrointestinal tract. In Physiology of the Gastrointestinal Tract (ed. L.R. Johnson), Raven Press, New York, pp. 335–81.Google Scholar
  45. Garzón, J., Höllt, V. and Herz, A. (1987) Cholecystokinin octapeptide activates an opioid mechanism in the guinea-pig ileum: a possible role for substance P. Eur. J. Pharmacol., 136, 361–70.Google Scholar
  46. Garzón, J., Höllt, V. and Sánchez-Blázquez, P. (1986) Neuropeptide Y is an inhibitor of neural function in the myenteric plexus of the guinea-pig ileum. Peptides, 7., 623–9.Google Scholar
  47. Gibbins, I.L., Campbell, G.C., Morris, J.L., Nilsson, S. and Murphy, R. (1987) Pathway-specific connections between peptide-containing preganglionic and postganglionic neurons in the vagus nerve of the toad (Bufo marinus). J. Auton. Nerv. Syst., 20, 43–55.Google Scholar
  48. Girard, F., Bachelard, H., St-Pierre, S. and Rioux, F. (1984) The contractile effect of bombesin, gastrin releasing peptide and various fragments in the rat stomach strip. Eur. J. Pharmacol., 102, 489–97.Google Scholar
  49. Grove, D.J. and Campbell, G. (1979) Effects of extrinsic nerve stimulation on the stomach of the flathead, Platycephalus bassensis, Cuvier and Valenciennes. Comp. Biochem. Physiol., 63C, 373–80.Google Scholar
  50. Grundy, D. and Scratcherd, T. (1982) A splanchno-vagal component of the inhibition of gastric motility. In Motility of the Digestive Tract (ed. M. Weinbeck), Raven Press, New York, pp. 39–43.Google Scholar
  51. Guillemin, R. (1976) Somatostatin inhibits the release of acetylcholine induced electrically in the myenteric plexus. Endocrinology, 99, 1653–4.Google Scholar
  52. Heimbach, D.M. and Crout, J.R. (1971) Treatment of paralytic ileus with adrenergic neuronal blocking drugs. Surgery, 69, 582–7.Google Scholar
  53. HellstrÖm, P.M. (1987) Mechanisms involved in colonic vasoconstriction and inhibition of motility induced by neuropeptide Y. Acta Physiol. Scand., 129, 549–56.Google Scholar
  54. HellstrÖm, P.M., Nylander, G. and Rosell, S. (1982) Effects of neurotensin on the transit of gastrointestinal contents in the rat. Acta Physiol. Scand., 115, 239–43.Google Scholar
  55. Holmgren, S., Jensen, J., JÖnsson, A.C., Lundin, K. and Nilsson, S. (1985) Neuropeptides in the gastrointestinal canal of Necturus maculosus. Cell Tissue Res., 241, 565–80.Google Scholar
  56. Holmgren, S. and JÖnsson, A.C. (1988) Occurrence and effects on motility of bombesin-related peptides in the gastrointestinal tract of the Atlantic cod, Gadus morhua. Comp. Biochem. Physiol., 89C, 249–56.Google Scholar
  57. Holmgren, S. and Nilsson, S. (1983) Bombesin-, gastrin/CCK-, 5-hydoxytryptamine-, neurotensin-, somatostatin-, and VIP-like immunoreactivity and catecholamine fluorescence in the gut of the elasmobranch, Squalus acanthias. Cell Tissue Res., 234, 595–618.Google Scholar
  58. Holzer, P., Lippe, I.T.H., Bartho, L. and Saria, A. (1987) Neuropeptide Y inhibits excitatory enteric neurons supplying the circular muscle of the guinea-pig small intestine. Gastroenterology, 92, 1944–50.Google Scholar
  59. Howd, R.A., Adamovics, A. and Palekar, A. (1978) Naloxone and intestinal motility. Experientia, 34, 1310–11.Google Scholar
  60. Hutchison, J.B. and Dockray, G.J. (1981) Evidence that the action of cholecystokinin octapeptide on the guinea-pig ileum longitudinal muscle is mediated in part by substance P released from the myenteric plexus. Eur. J. Pharmacol., 69, 87–94.Google Scholar
  61. Itoh, Z., Honda, R., Hiwatashi, K., Takeuchi, S., Aizawa, I., Tagayanagi, R. and Couch, E. (1976) Motilin-induced mechanical activity in the canine alimentary tract. Scand J. Gastroenterol., 11, (Suppl. 39), 93–110.Google Scholar
  62. Iversen, L.L. (1979) Criteria for establishing a neurotransmitter. In Neurosciences Research Program Bulletin, vol 17. Non-adrenergic, Non-cholinergic Autonomic Neurotransmission Mechanisms (eds G. Burnstock, M.D. Gershon, T. Hokfelt, L.L. Iversen and J.H. Szurszewski), MIT Press, Cambridge, pp. 388–91.Google Scholar
  63. Jansson, G. (1969) Extrinsic nervous control of gastric motility. An experimental study in the cat. Acta Physiol. Scand., Suppl., 326, 1–42.Google Scholar
  64. Johnson, L.R. (ed.) (1987) Physiology of the Gastrointestinal Tract, Raven Press, New York, Vol. 1–12,1–1800.Google Scholar
  65. Kantoh, M., Takahashi, T., Kusunoki, M., Yamamura, T. and Utsonomiya, J. (1987) Dual action of cholecystokinin-octapeptide on the guinea-pig antrum. Gastroenterology, 92, 376–82.Google Scholar
  66. Katayama, Y., North, R. A. and Williams, J.T. (1979) The action of substance P on neurons of the myenteric plexus of the guinea-pig small intestine. Proc. R. Soc. Lond. (Biol)., 191, 191–208.Google Scholar
  67. Kellow, J.E., Miller, L.J., Phillips, S.F., Haddad, A.C., Zinsmeister, A.R. and Charboneau, J.W. (1987) Sensitivities of human jejunum, ileum, proximal colon, and gallbladder to cholecystokinin octapeptide. Am.J. Physiol., 252, G345–56.Google Scholar
  68. Kelly, K.A. (1981) Motility of the stomach and gastroduodenal junction. In Physiology of the Gastrointestinal Tract (ed. L.R. Johnson), Raven Press, New York, pp. 393–410Google Scholar
  69. Kitabgi, P. and Vincent, J.P. (1981) Neurotensin is a potent inhibitor of guinea-pig colon contractile activity. Eur. J. Pharmacol., 74, 311–18.Google Scholar
  70. Kostuch, T.E. and Duke, G.E. (1975) Gastric motility in great horned owls (Bubo virginianus). Comp. Biochem. Physiol., 51A, 201–5.Google Scholar
  71. Kuwahara, A., Ozawa, K. and Yanaihara, N. (1986) Effects of cholecystokinin-octapeptide on gastric motility of anaesthetized dogs. Am.J. Physiol., 251, G678–81.Google Scholar
  72. Larsson, L.T. (1980) Gastrointestinal cells producing endocrine, neurocrine and paracrine messengers. Clin. Gastroenterol., 9, 485–516.Google Scholar
  73. Larsson, L.T. (1986) Neuropeptides in Hirschsprung’s disease. Thesis, University of Lund, Sweden, pp. 1–146.Google Scholar
  74. Larsson, L.T., Malmfors, G. and Sundler, F. (1983) Peptidergic innervation in Hirschsprung’s disease. Z. Kinderchir., 38, 301–4.Google Scholar
  75. Larsson, L.T., Malmfors, G., Wahlestedt, C., Leander, S. and Hakanson, R. (1987) Hirschsprung’s disease: a comparison of the nervous control of ganglionic and aganglionic smooth muscle in vitro. J. Pediat. Surg., 22, 431–5.Google Scholar
  76. Lundberg, J.M., HÖkfelt, T., Änggård, A., Uvnas-Wallensten, K., Brimijoin, S., Brodin, E. and Fahrenkrugh, J. (1980) Peripheral peptide neurons, distribution, axonal transport and some aspects on possible function. In Neural Peptides and Neuronal Communication (eds E. Costa and M. Trabucchi), Raven Press, New York, pp. 25–36.Google Scholar
  77. Lundberg, J.M., HÖkfelt, T., Kewenter, J., Petterson, G., Ahlman, H., Edin, R., Dahlstrom, A., Nilsson, G., Terenius, L., Uvnäs-Wallensten, K. and Said, S. (1979) Substance P-, VIP-, and enkephalin-like immunoreactivity in the human vagus nerve. Gastroenterology, 77, 468–71.Google Scholar
  78. MacKenzie, I. and Bumstock, G. (1980) Evidence against vasoactive intestinal polypeptide being the non-adrenergic, non-cholinergic inhibitory transmitter released from nerves supplying the smooth muscle of the guinea- pig taenia coli. Eur. J. Pharmacol., 67, 255–64.Google Scholar
  79. Maggi, C.A., Manzini, S., Giuliani, S., Santicioli, P. and Meli, A. (1987) Calcitonin gene-related peptide activates non-adrenergic, non-cholinergic relaxations of the rat isolated duodenum. J. Pharm. Pharmacol., 39, 327–8.Google Scholar
  80. Mayer, E.A., Elashoff, J. and Walsh, J.H. (1982) Characterization of bombesin effects on canine gastric muscle. Am. J. Physiol., 243, G141–7.Google Scholar
  81. Meyer, J.M. (1987) Motility of the stomach and gastroduodenal junction. In Physiology of the Gastrointestinal Tract (ed. L.R. Johnson), Raven Press, New York, pp. 613–29.Google Scholar
  82. Miller, J., Kauffman, G., Elashoff, J., Ohashi, H., Carter, D. and Meyer, J.H. (1981) Search for resistances controlling gastric emptying of liquid meals. Am. J. Physiol., 241, G403–25.Google Scholar
  83. Morgan, K.G., Schmaltz, P.F. and Szurszewski, J.H. (1978) Electrical and mechanical effects of molecular variants of CCK on antral smooth muscle. Am. J. Physiol., 235, E324–9.Google Scholar
  84. Murphy, R.B., Smith, G.P. and Gibbs, J. (1987) Pharmacological examination of cholecystokinin (CCK-8)-induced contractile activity in the rat isolated pylorus. Peptides, 8, 127–34.Google Scholar
  85. Nemeth, P.R., Zafirov, D.H. and Wood, J.D. (1985) Effects of cholecystokinin, caerulein and pentagastrin on electrical behaviour of myenteric neurons. Eur. J. Pharmacol., 116, 263–9.Google Scholar
  86. Nilsson, S. (1983) Autonomic Nerve Function in the Vertebrates, Springer-Verlag, Berlin, Heidelberg and New York, pp. 1–253Google Scholar
  87. Nilsson, S. and Holmgren, S. (1989) Novel neurotransmitters in the autonomic nervous system of non-mammalian vertebrates. J. Pharmacol. Ther., 41.Google Scholar
  88. North, R. A., Katayama, Y. and Williams, J.T. (1979) On the mechanism and site of action of enkephalin on single myenteric neurones. Brain Res., 165, 67–77.Google Scholar
  89. Ohkawa, H. (1985) Effects of neurotensin on the non-adrenergic inhibitory neurotransmission in the guinea-pig duodenum. Jap. J. Physiol., 35, 973–83.Google Scholar
  90. Osborne, P. and Campbell, G. (1986) A pharmacological and immunohisto-chemical study of the splanchnic innervation of ileal longitudinal muscle in the toad Bufo marinus. Naunyn-Schmiedebergs Arch. Pharmacol, 334, 210–17.Google Scholar
  91. Paton, W.D.M. and Zar, M.A. (1968) The origin of acetylcholine released from guinea-pig intestine and longitudinal muscle strips. J. Physiol. (Lond), 194, 13–33.Google Scholar
  92. Rattan, S. and Goyal, R.K. (1986) Structure-activity relationship of subtypes of cholecystokinin receptors in the cat lower esophageal sphincter. Gastroenterology, 90, 94–102.Google Scholar
  93. RÖkaeus, Å., Melander, T., HÖkfelt, T., Lundberg, J., Tatemoto, K., Carlquist, M. and Mutt, V. (1984) A galanin-like peptide in the central nervous system and intestine of the rat. Neurosci. Lett., 47, 161–6.Google Scholar
  94. Roman, C. and Gonella, J. (1987) Extrinsic control of digestive tract motility. In Physiology of the Gastrointestinal Tract (ed. L.R. Johnson), Raven Press, New York, pp. 507–53.Google Scholar
  95. Rosenfeld, M.G., Mermod, J.J., Amara, S.G., Swanson, L.W., Rivier, J., Vale, W.W. and Evans, R.M. (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, Lond., 304, 129.Google Scholar
  96. Scheurer, U., Varga, L., Drack, E., Vurki, H.-R. and Halter, F. (1983) Mechanism of action of cholecystokinin octapeptide on rat antrum, pylorus and duodenum. Am. J. Physiol, 244, G26–72.Google Scholar
  97. Schultzberg, M. and Dalsgaard, C.-J. (1983) Enteric origin of bombesin immunoreactive fibres in the rat coeliac-superior mesenteric ganglion. Brain Res., 269, 190–95.Google Scholar
  98. Smith, J., Kelly, K.A. and Weinshilboum, M. (1977) Pathophysiology of postoperative ileus. Arch. Surg., 112, 203–9.Google Scholar
  99. Struntz, U.T., Code, C.F. and Grossman, M.I. (1979) Effect of gastrin on electrical activity of antrum and duodenum of dogs. Proc. Soc. Exp. Biol. Med., 161, 25–7.Google Scholar
  100. Szurszewski, J.H. (1987) Electrophysiological basis of gastrointestinal motility. In Physiology of the Gastrointestinal Tract (ed. L.R. Johnson), Raven Press, New York, pp. 383–422.Google Scholar
  101. Tatemoto, K, RÖkaeus, Å., JÖrnvall, H., McDonald, T.J. and Mutt, V. (1983) Galanin - a novel biologically active peptide from porcine intestine. FEBS Lett., 164, 124–8.Google Scholar
  102. Thomas, J.E. (1957) Mechanics and regulation of gastric emptying. Physiol. Rev., 37, 453–74.Google Scholar
  103. Uvnäs-Wallensten, K., Efendic, S. and Luft, R. (1978) Occurrence of somatostatin-like immunoreactivity in the vagal nerves. Acta Physiol. Scand., 102, 248–50.Google Scholar
  104. Uvnäs-Wallensten, K., Rehfeld, J.F. and Uvnäs, B. (1977) Heptadecapeptide gastrin in the vagal nerve. Proc. Natl. Acad. Sci. U.S.A., 74 5707–11.Google Scholar
  105. Vaughn-Williams, E.M. and Streeten, D.H.P. (1950) Action of morphine, pethidine and amidone upon intestinal motility of conscious dogs. Br. J. Pharmacol., 5, 584–603.Google Scholar
  106. Vizi, S.E., Bertaccini, G., Impicciatore, M. and Knoll, J. (1973) Evidence that acetylcholine released by gastrin polypeptides contributes to their effect on gastrointestinal motility. Gastroenterology, 64, 268–77.Google Scholar
  107. Williams, J.T. and North, R. A. (1979) Effects of endorphins on single myenteric neurons. Brain Res., 165, 57–65.Google Scholar
  108. Wingate, D.L., Ruppin, H., Green, W.E.R., Thompson, H.H., Domschke, W., Wunsch, E., Demling, L. and Ritchie, H.D. (1976) Motilin-induced electrical activity in the canine gastrointestinal tract. Scand. J. Gastroenterol., 11 (Suppl. 39), 111–18.Google Scholar
  109. Wood, J.D. (1984) Enteric neurophysiology. Am. J. Physiol., 247, G585–98.Google Scholar
  110. Wood, J.D. (1987) Physiology of the enteric nervous system. In Physiology of the Gastrointestinal Tract (ed. L.R. Johnson), Raven Press, New York, pp. 67–109.Google Scholar
  111. Yamamura, H.I. and Snyder, S.H. (1974) Muscarininc cholinergic receptor binding in the longitudinal muscle of the guinea-pig ileum with (3H)quinuclidinyl benzilate. Molec. Pharmacol., 10, 861–7.Google Scholar
  112. Yau, W.M., Dorsett, J.A. and Youther, M.L. (1986) Evidence for galanin as an inhibitory neuropeptide on myenteric cholinergic neurons in the guinea-pig small intestine. Neurosci. Lett., 72, 305–8.Google Scholar
  113. Zafirov, D.H., Palmer, J.M., Nemeth, P.R. and Wood, J.B. (1985) Bombesin, gastrin releasing peptide and vasoactive intestinal polypeptide excite myenteric neurons. Eur. J. Pharmacol., 115, 103–7Google Scholar

Copyright information

© Chapman and Hall 1989

Authors and Affiliations

  • Susanne Holmgren

There are no affiliations available

Personalised recommendations