Food Gels pp 79-119 | Cite as

Carrageenans

  • Norman F. Stanley
Part of the Elsevier Applied Food Science Series book series (EAFSS)

Abstract

The term ‘carrageenan’ is used to name a class of galactan polysaccharides that occur as intercellular matrix material in numerous species of red seaweeds (marine algae of the class Rhodophyta).

Keywords

Casein Micelle Chocolate Milk Flavour Release Marine Colloid Milk Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Towle, G. A., in Industrial Gums, ed. R. L. Whistler & J. N. BeMiller. Academic Press, New York, 1973, pp. 83 – 114Google Scholar
  2. 2.
    Hirase, S. & Watanabe, K., The presence of pyruvate residues in λ-carrageenan and a similar polysaccharide. Bull. Inst. Chem. Res. Kyoto Univ., 50 (1972) 332 – 6Google Scholar
  3. 3.
    DiNinno, V. L., McCandless, E. L. & Bell, R. A., Pyruvic acid derivative of a carrageenan from a marine red alga (Petrocelis species). Carbohydrate Res., 71 (1979) C1 – C4CrossRefGoogle Scholar
  4. 4.
    McCandless, E. L. & Gretz, M. R., Biochemical and immunochemical analysis of carrageenans of the Gigartinaceae and Phyllophoraceae. Hydrobiologia, 116 /117 (1984) 175 – 8CrossRefGoogle Scholar
  5. 5.
    Hirase, S., Araki, C. & Watanabe, K., Component sugars of the polysaccharide of the red seaweed Grateloupia elliptica. Bull. Chem. Soc. Japan, 40 (1967) 1445 – 8CrossRefGoogle Scholar
  6. 6.
    Nunn, J. R. & Parolis, H., A polysaccharide from Aeodes orbitosa. Carbohydrate Res., 6 (1968) 1 – 11CrossRefGoogle Scholar
  7. 7.
    Allsobrook, A. J. R., Nunn, J. R. & Parolis, H, Sulphated polysaccharides of the Grateloupiaceae family. Part V. A polysaccharide from Aeodes ulvoidea. Carbohydrate Res., 16 (1971) 71 – 8CrossRefGoogle Scholar
  8. 8.
    Parolis, H., The polysaccharides of Phyllymenia hieroglyphica (P. belangeri) and Pachymenia hymantophora. Carbohydrate Res., 93 (1981) 261 – 7CrossRefGoogle Scholar
  9. 9.
    Smith, D. B. & Cook, W. H., Fractionation of carrageenin. Arch. Biochem. Biophys., 45 (1953) 232 – 3Google Scholar
  10. 10.
    Smith, D. B., O’Neill, A. N. & Perlin, A. S., Studies on the heterogeneity of carrageenin. Can. J. Chem., 32 (1955) 1352 – 60Google Scholar
  11. 11.
    Rees, D. A., The carrageenan system of polysaccharides. Part I. The relation between the Κ-and λ-components. J. Chem. Soc. (1963) 1821–32Google Scholar
  12. 12.
    Dolan, T. C. S. & Rees, D. A., The carrageenans. Part II. The positions of the glycosidic linkages and sulphate esters in λ-carrageenan. J. Chem. Soc. (1965) 3534-9Google Scholar
  13. 13.
    Anderson, N. S., Dolan, T. C. S. & Rees, D. A, Carrageenans. Part III. Oxidative hydrolysis of methylated K-carrageenan and evidence for a masked repeating structure. J. Chem. Soc. (C) (1968) 596-601Google Scholar
  14. 14.
    Anderson, N. S., Dolan, T. C. S., Penman, A, Rees, D. A., Mueller, G. P., Standoff, D. J. & Stanley, N. F., Carrageenans. Part IV. Variations in the structure and gel properties of K-carrageenan, and the characterisation of sulphate esters by infrared spectroscopy. Chem. Soc. (C) (1968) 602-6Google Scholar
  15. 15.
    Anderson, N.C., Dolan, T.C. S., Lawson, C.J, Penman, A. & Rees, D. A., Carrageenans. Part V. The masked repeating structures of λ- and μ- carrageenans. Carbohydrate Res., 7 (1968) 468 – 73CrossRefGoogle Scholar
  16. Lawson, C. J. & Rees, D. A., Carrageenans. Part VI. Reinvestigation of acetolysis products of λ-carrageenan. Revision of the structure of α-1,3-galactotriose, and a further example of the reverse specificities of glycoside hydrolysis and acetolysis. J. Chem. Soc. (C) (1968) 1301 – 4Google Scholar
  17. 17.
    Anderson, N. S, Dolan, T. C. S. & Rees, D. A., Carrageenans. Part VII. Polysaccharides from Eucheuma spinosum and Eucheuma cottonii. The covalent structure of ι-carrageenan. J. Chem. Soc. Perkin I (1973) 2173-6CrossRefGoogle Scholar
  18. 18.
    Lawson, C. J., Rees, D. A., Stancioff, D. J. & Stanley, N. F., Carrageenans. Part VIII. Repeating structures of galactan sulphates from Furcellaria fastigiata, Gigartina canaliculata, Gigartina chamissoi, Gigartina atropurpurea, Ahnfeltia durvillaei, Gymnogongrus furcellatus, Eucheuma cottonii, Eucheuma spinosum, Eucheuma isiforme, Eucheuma uncinatum, Agardhiella tenera, Pachymenia hymantophora and Gloiopeltis cervicornis. J. Chem. Soc. Perkin I (1973) 2177-82Google Scholar
  19. 19.
    Penman, A. & Rees, D. A., Carrageenans. Part IX. Methylation analysis of galactan sulphates from Furcellaria fastigiata, Gigartina canaliculata, Gigartina chamissoi, Gigartina atropurpurea, Ahnfeltia durvillaei, Gymnogongrus furcellatus, Eucheuma isiforme, Eucheuma uncinatum, Agardhiella tenera, Pachymenia hymantophora and Gloiopeltis cervicornis. Structure of ξ-carrageenan. J. Chem. Soc. Perkin I (1973) 2182 – 7Google Scholar
  20. Penman, A. & Rees, D. A., Carrageenans. Part X. Synthesis of 3,6-di-O-methyl-D-galactose, a new sugar from the methylation analysis of polysaccharides related to ξ-carrageenan. J. Chem. SOC. Perkin I (1973) 2188 – 91Google Scholar
  21. 21.
    Penman, A. & Rees, D. A., Carrageenans. Part XI. Mild oxidative hydrolysis of Κ- and λ-carrageenans and the characterisation of oligosaccharide sulphates. J. Chem. Soc. Perkin I (1973) 2191-6Google Scholar
  22. Welti, D., Carrageenans. Part XII. The 300 MHz proton magnetic resonance spectra of methyl ß-D-galactopyranoside, agarose, kappa-carrageenan, and segments of iota-carrageenan and agarose sulphate. J. Chem. Res. (S) (1977) 312 – 13Google Scholar
  23. 23.
    Pernas, A. J., Smidsrod, O., Larsen, B. & Haug, A., Chemical heterogeneity of carrageenans as shown by fractional precipitation with potassium chloride. Acta Chem. Scand., 21 (1967) 98 – 110CrossRefGoogle Scholar
  24. 24.
    Stancioff, D. J. & Stanley, N. F., Infrared and chemical studies on algal polysaccharides. In Proc. XIth Int. Seaweed Symp., ed. R. Margalef. Subsecretaria de la Marina Mercante, Madrid, 1969, pp. 595 – 609Google Scholar
  25. 25.
    Lawson, C. J. & Rees, D. A., An enzyme for the metabolic control of polysaccharide conformation and function. Nature, 227 (1970) 390 – 3CrossRefGoogle Scholar
  26. 26.
    Stanley, N. F., Process for treating a polysaccharide of seaweeds of the Gigartinaceae and Solieriaceae families. US Patent 3 094 517 (1963Google Scholar
  27. 27.
    Greer, C. W. & Yaphe, W., Characterization of hybrid (beta-kappa-gamma) carrageenan from Eucheuma gelatinae J. Agardh (Rhodophyta, Solieriaceae) using carrageenases, infrared and 13C-nuclear magnetic resonance spectroscopy. Bot. Marina, 27 (1984) 473 – 8Google Scholar
  28. 28.
    Painter, T. J., The location of the sulphate half-ester groups in furcellaran and Κ-carrageenan. In Proc. 5th Int. Seaweed Symp., ed. E. G. Young & J. L. McLachlan. Pergamon Press, London, 1966, pp. 305-13Google Scholar
  29. 29.
    Sand, R. E. & Glicksman, M., Seaweed extracts of potential economic importance. In Industrial Gums, ed. R. L. Whistler & J. N. BeMiller. Academic Press, New York, 1973, pp. 147–94Google Scholar
  30. 30.
    Furneaux, R. H. & Miller, I. J., Isolation and 13C-NMR spectral study of the water soluble polysaccharides from four South African red algae. Bot. Marina, 29 (1986) 3 – 10CrossRefGoogle Scholar
  31. 31.
    Laserna, E. C, Veroy, A. H, Luistro, A. H. & Cajipe, G. J. B., Extracts from some red and brown seaweeds of the Philippines. In Proc. 10th Int. Seaweed Symp., ed. T. Levring. Walter de Gruyter, Berlin, 1981, pp. 443-8Google Scholar
  32. 32.
    Greer, C. W, Shomer, I., Goldstein, M. E. & Yaphe, W., Analysis of carageenan from Hypnea musciformis by using κ- and ι-carrageenases and 13C-NMR spectroscopy. Carbohydrate Res, 129 (1984) 189 – 96CrossRefGoogle Scholar
  33. 33.
    Stanley, N. F., The properties of carrageenans as related to structure. In Proc. CIC Conference on the Marine Sciences, ed. J. Rigney. University of Prince Edward Island, Charlottetown, 1970, Paper No. 13Google Scholar
  34. 34.
    Deslandes, E., Floc’h, J. Y, Bodeau-Bellion, C., Brault, D. & Braud, J. P., Evidence for λ-carrageenan in Soliera chordalis (Solieriaceae) and Callibeph-aris jubata, Callibepharis ciliata, Cystoclonium purpureum (Rhodo-phyllidaceae). Bot. Marina, 28 (1985) 317 – 18CrossRefGoogle Scholar
  35. 35.
    Guiseley, K. B., Stanley, N. F. & Whitehouse, P. A., Carrageenan. In Handbook of Water-Soluble Gums and Resins, ed. R. L. Davidson. McGraw-Hill, New York, 1980, pp. 5–1–5–30Google Scholar
  36. Rees, D. A, Mechanism of gelation in polysaccharide systems. In Gelation and Gelling Agents, British Food Manufacturing Industries Research Association, Symp. Proc. No. 13, London, 1972, pp. 7 – 12Google Scholar
  37. 37.
    Arnott, S., Scott, W. E., Rees, D. A. & McNab, C. G. A., ι-Carrageenan: molecular structure and packing of polysaccharide double helices in oriented fibres of divalent cation salts. J. Mol. Biol., 90 (1974) 253 – 67CrossRefGoogle Scholar
  38. 38.
    Bryce, T. A., Clark, A. H., Rees, D. A. & Reid, D. S., Concentration dependence of the order-disorder transition of carrageenans. Further confirmatory evidence for the double helix in solution. Eur. J. Biochem., 122 (1982) 63 – 9CrossRefGoogle Scholar
  39. 39.
    Bryce, T. A, McKinnon, A., Morris, E. R., Rees, D. A. & Thorn, D., Chain conformations in the sol-gel transitions, and their characterisation by spectroscopic methods. J. Chem. Soc., Faraday Disc., 57 (1974) 221 – 9CrossRefGoogle Scholar
  40. 40.
    Morris, E. R., Rees, D. A. & Robinson, G., Cation-specific aggregation of carrageenan helices: Domain model of polymer gel structure. J. Mol. Biol., 138 (1980) 349 – 62CrossRefGoogle Scholar
  41. 41.
    Bayley, S. T., X-ray and infrared studies of kappa-carrageenin. Biochim Biophys. Acta, 17 (1955) 194 – 205Google Scholar
  42. 42.
    Paoletti, S., Smidsrod, O. & Grasdalen, H, Thermodynamic stability of the ordered conformation of carageenan polyelectrolytes. Biopolymers, 23 (1984) 1771 – 94CrossRefGoogle Scholar
  43. 43.
    Mueller, G. P. & Rees, D. A., Current structural views of red seaweed polysaccharides. In Drugs from the Sea, ed. H. D. Freudenthal. Marine Technology Society, Washington DC, 1968, pp. 241 – 55Google Scholar
  44. 44.
    Rees, D. A., Steele, I. W. & Williamson, F. B., Conformational analysis of polysaccharides. III. The relation between stereochemistry and properties of some natural polysaccharides. J. Polymer Sci., Part C, 28 (1969) 261 – 76Google Scholar
  45. 45.
    Carroll, V., Morris, V. J. & Miles, M. J., X-ray diffraction studies of kappa carrageenan-tara gum mixed gels. Macromolecules, 17 (1984) 2443CrossRefGoogle Scholar
  46. 46.
    Cairns, P., Miles, M. J. & Morris, V. J. Int. J. Biol. Macromol., 8 (1986) 124CrossRefGoogle Scholar
  47. 47.
    Cairns, P., Miles, M. J. & Morris, V. J, X-ray diffraction studies on konjac mannan-kappa carrageenan mixed gels. Carbohydrate Polymers, 8 (1988) 99 – 104CrossRefGoogle Scholar
  48. 48.
    King, G. M. & Lauterbach, G. E., Characterization of carrageenan nitrogen content and its susceptibility to enzymatic hydrolysis. Bot. Marina, 30 (1987) 33 – 9CrossRefGoogle Scholar
  49. 49.
    Lin, C-F., Interaction of sulfated polysaccharides with proteins. In Food Colloids, ed. H. D. Graham. Avi Publishing Co., Westport, Connecticut, 1977, pp. 320 – 46Google Scholar
  50. 50.
    Hansen, P. M. T., Hydrocolloid-protein interactions: Relationship to stabilization of fluid milk products. A review. In Gums and Stabilisers for the Food Industry, ed. G. O. Phillips, D. J. Wedlock & P. A. Williams. Pergamon Press, Oxford, 1982, pp. 127 – 38Google Scholar
  51. 51.
    Snoeren, Th. H. M., Kappa-carrageenan. A study on its physicochemical properties, sol-gel transition and interaction with milk proteins. Thesis, Nederlands Instituut voor Zuivelonderzoek, Ede, The Netherlands, 1976Google Scholar
  52. 52.
    Stainsby, G., Proteinaceous gelling systems and their complexes with polysaccharides. Food Chem., 6 (1980) 3 – 14CrossRefGoogle Scholar
  53. 53.
    Payens, T. A. J., Light scattering of protein reactivity of polysaccharides, especially of carrageenans. J. Dairy Sci., 55 (1972) 141 – 50CrossRefGoogle Scholar
  54. 54.
    Snoeren, Th. H. M., Payens, T. A. J., Jeunink, J. & Both, P., Electrostatic interaction between κ-carrageenan and κ-casein. Milchwissenschaft, 30 (1975) 393 – 6Google Scholar
  55. 55.
    Grindrod, J. & Nickerson, T. A., Effect of various gums on skim milk and purified milk proteins. J. Dairy Sci., 51 (1968) 834 – 41CrossRefGoogle Scholar
  56. 56.
    Snoeren, Th. H. M., Both, P. & Schmidt, D. G., An electron-microscopic study of carrageenan and its interaction with κ-casein. Neth. Milk Dairy J., 30 (1976) 132 – 41Google Scholar
  57. 57.
    Schmidt, D. G. & Payens, T. A. J., Micellar aspects of casein. Surf Colloid Sci., 9 (1976) 162 – 229Google Scholar
  58. 58.
    Hood, L. F. & Allen, J. E., Ultrastructure of carrageenan-milk sols and gels. J. Food Sci., 42 (1977) 1062 – 5CrossRefGoogle Scholar
  59. 59.
    Boorgaerdt, J., Instability of milk due to a high content of calcium ions. Nature (London), 174 (1954) 884CrossRefGoogle Scholar
  60. 60.
    Rose, D., A proposed model of micelle structure in bovine milk. Dairy Sci. Abstr., 31 (1969) 171Google Scholar
  61. 61.
    Waugh, D. F., Creamer, L. K., Slattery, C. W. & Dresdner, G. W., Core Polymers of casein micelles. Biochemistry, 9 (1970) 786CrossRefGoogle Scholar
  62. 62.
    Lin, C-F., The casein stabilizing function of sulfated polysaccharides. PhD dissertation, Ohio State University, Columbus, 1971Google Scholar
  63. 63.
    Hansen, P. M. T., Stabilization of αs-casein by carrageenan. J. Dairy Sci., 51 (1968) 192 – 5CrossRefGoogle Scholar
  64. 64.
    Skura, B. J. & Nakai, S., Physicochemical verification of non-existence of αs1-casein-κ-carrageenan interaction in calcium-free systems. J. Food Sci., 45 (1980) 582 – 91CrossRefGoogle Scholar
  65. 65.
    Lin, C-F. & Hansen, P M. J., Stabilization of casein micelles by carrageenan. Macromolecules, 3 (1970) 269 – 74CrossRefGoogle Scholar
  66. 66.
    O’Loughlin, K. & Hansen, P. M. T., Stabilization of rennet-treated milk protein by carrageenan. J. Food Sci., 37 (1972) 719 – 21CrossRefGoogle Scholar
  67. 67.
    Chakraborty, B. K. & Randolph, H. E., Stabilization of calcium sensitive plant proteins by κ-carrageenan. J. Food Sci., 37 (1972) 719 – 21CrossRefGoogle Scholar
  68. 68.
    Badui, S., Fate of carrageenan in processed milk. PhD dissertation, Ohio State University, Columbus, 1977Google Scholar
  69. 69.
    Stanley, N. F., unpublished workGoogle Scholar
  70. 70.
    Swanson, A. M., Maxwell, G. E. & Roehrig, P. C, Sterilized milk concentrate properties as affected by certain processing treatments and additives. (Abstract) J. Dairy Sci., 51 (1968) 92CrossRefGoogle Scholar
  71. 71.
    MacMullan, E. A. & Eirich, F. K., The precipitation reaction of carrageenan with gelatin. J. Colloid Sci., 18 (1963) 526 – 37CrossRefGoogle Scholar
  72. 72.
    Hidalgo, J. & Hansen, P. M. T., Interactions between food stabilizers and ß-lactoglobulin. Agric. Food Chem., 17 (1969) 1089 – 92CrossRefGoogle Scholar
  73. 73.
    Anon., Dutch vla/pourable custard. Application Bulletin D-54, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  74. 74.
    Anon., Calcium fortified fluid milk. Application Bulletin E-53, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  75. 75.
    Nielsen, B. J., Function and evaluation of emulsifiers in ice cream and whippable emulsions. Gordian, 76 (1976) 200 – 25Google Scholar
  76. 76.
    Keeney, P. G. & Kroger, M., Frozen dairy products. In Fundamentals of Dairy Chemistry, 2nd edn, ed. B. H. Webb, A. H. Johnson & J. A. Alford. Avi Publishing Co., Westport, Connecticut, 1974, pp. 873 – 913Google Scholar
  77. 77.
    Arbuckle, W. S., Ice Cream, 2nd edn. Avi Publishing Co., Westport, Connecticut, 1972Google Scholar
  78. 78.
    Glicksman, M., Red seaweed extracts (agar, carrageenans, furcellaran). In Food Hydrocolloids, Vol. 2, ed. M. Glicksman. CRC Press, Boca Raton, Florida, 1983, pp. 73 – 113Google Scholar
  79. 79.
    Anon., Cottage cheese dressing. Application Bulletin E-27, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  80. 80.
    Anon, Imitation cheese-block. Application Bulletin B-11, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  81. 81.
    Glicksman, M, Frozen gels of Eucheuma. US Patent 3 250 621 (1966Google Scholar
  82. 82.
    Baker, G. L, Edible gelling composition containing Irish moss extract, locust bean gum and an edible salt. US Patent 2 466 146 (1949Google Scholar
  83. 83.
    Baker, G. L., Gelling compositions. US Patent 2 669 519 (1954Google Scholar
  84. 84.
    Baker, G. L, Carrow, G. W. & Woodmansee, C. W., Three-element colloid makes better low-solid gels. Food Ind., 21 (1949) 617 – 19, 711, 712Google Scholar
  85. 85.
    Glicksman, M, Farkas, E. & Klose, R. E, Cold water soluble Eucheuma gel mixtures. US Patent 3 502 483 (1970Google Scholar
  86. 86.
    Anon, Reduced calorie jam and jelly (imitation). Application Bulletin B-19, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  87. 87.
    Anon, Sorbet. Application Bulletin B-49, FMC Corporation, Marine Colloids Div., 1987Google Scholar
  88. 88.
    Anon., Canned retorted pet food. Application Bulletin B-30, FMC Corporation, Marine Colloids Div., 1987Google Scholar
  89. 89.
    Lewis, J. G, Stanley, N. F. & Guist, G. G., Commercial production and applications of algal hydrocolloids. In Algae and Human Affairs, ed. C. A. Lembi & J. R. Waaland. Cambridge University Press, Cambridge, 1988, pp. 205 – 36Google Scholar
  90. 90.
    Anon, No oil/low oil pourable Italian type dressing. Application Bulletin C-5, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  91. 91.
    Anon., Imitation mayonnaise. Application Bulletin C-61, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  92. 92.
    Anon., Pumpkin pie filling. Application Bulletin D-17, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  93. 93.
    Anon., Low-fat frankfurters. Application Bulletin B-60, FMC Corporation, Marine Colloids Div., 1988Google Scholar
  94. 94.
    Anon., Meat application-ham pumping/tumbling. Application Bulletin B-41, FMC Corporation, Marine Colloids Div., 1987Google Scholar
  95. 95.
    Anon., Processed poultry products. Application Bulletin B-51, FMC Corporation, Marine Colloids Div., 1987Google Scholar
  96. 96.
    Bjerre-Petersen, E., Christensen, J. & Hemmingsen, P., Furcellaran. In Industrial Gums, 2nd edn, ed. R. L. Whistler & J. N. BeMiller. Academic Press, New York, 1973, pp. 123 – 36Google Scholar
  97. 97.
    Stanley, N. F., Production, properties and use of carrageenan. In Production and Utilization of Products from Commercial Seaweeds, ed. D. J. McHugh. FAOUN, Rome, 1987, pp. 97 – 147Google Scholar
  98. 98.
    United States Code of Federal Regulations (Title 21). Government Printing Office, Washington, DC, 1985Google Scholar
  99. 99.
    Food Chemicals Codex, 3rd edn. National Academy of Sciences, Washington, DC, 1981, pp. 74 – 5Google Scholar
  100. 100.
    United States Pharmacopeia/National Formulary. United States Pharma-copeial Convention, Rockville, MarylandGoogle Scholar
  101. 101.
    Official Journal of the European Communities. Specifications for standards of purity. No. 1 232/12 14/8/78Google Scholar
  102. 102.
    Evaluation of Certain Food Additives and Contaminants (E407—Carrageenan). Twenty-eighth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization Technical Report Series 710, Geneva, 1984Google Scholar
  103. 103.
    Anon., List No. 297 USAN Council New Names Column. Clinical Pharmacology and Therapeutics, 44 (1988) 246 – 8CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1990

Authors and Affiliations

  • Norman F. Stanley
    • 1
  1. 1.BioProducts DepartmentMarine Colloids Division, FMC CorporationRocklandUSA

Personalised recommendations