Oxidation of Si3N4 and Sic by High Temperature—High Pressure Water Vapor

  • M. Yoshimura
  • J. Kase
  • S. Sōmiya

Abstract

Silicon nitride and silicon carbide have attracted great attention in recent years because of their potential application as high-temperature structural ceramics. Oxidation resistance is one of the most important properties in these applications. In air or oxygen, the oxidation believed to proceed as follows;
$$ S{i_3}{N_4} + 3{O_2} \to 3Si{O_2} + 2{N_2} $$
([1])
, and
$$ SiC + 2{O_2} \to Si{O_2} + C{O_2} $$
([2])
. A certain numbers of reports(1–3) argued that the oxidation rate was accelerated when water vapor coexisted with oxygen. However, the reaction of Si3N4 or SiC by H2O only has not been studied yet. We have studied the oxidation of Si3N4 (4) and SiC (5) powders by H2O under hydrothermal conditions where almost only high-temperature high-pressure H2O exist. Observed reactions are;
$$ S{i_3}{N_4} + 6{H_2}O \to 3Si{O_2} + 4N{H_3} $$
([3])
, and
$$ SiC + 2{H_2}O \to Si{O_2} + C{H_4} $$
([4])
. These reactions are quite different from the reactions in oxidative atmosphere without H2O. We discuss in the present paper the effects of H2O on high-temperature degradation of Si3N4 and SiC powders and ceramics based on the experimental results.

Keywords

Silicon Nitride Ceramic Sample Amorphous Silica Silica Layer Oxidation Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    H.Suzuki, Yogyo Kyokai Shi, 67, 157–64 (1957).Google Scholar
  2. 2).
    P.J.Jorgensen, M.E.Wadsworth, and I.B.Cutler, J. Am. Ceram. Soc., 44, 258–61 (1961)CrossRefGoogle Scholar
  3. 3).
    S.C.Singhal, J. Am. Ceram. Soc., 59, 81–82 (1976).CrossRefGoogle Scholar
  4. 4).
    M.Yoshimura, J.Kase, S.Sōmiya, Yogyo Kyokai Shi, 94, 129–34 (1986)Google Scholar
  5. 5).
    M.Yoshimura, J.Kase, S.Sōmiya, J.Mater. Research, in press (1986)Google Scholar
  6. 6).
    R.K. Iler, “The Chemistry of Silica”, John Wiley & Sons, New York (1979) p.16.Google Scholar
  7. 7).
    R.M.Horton, J.Am.Ceram.Soc., 52, 121–24 (1969).CrossRefGoogle Scholar
  8. 8).
    D. Tétard, P.Lortholary, P.Goursat, and M.Billy, Rev.Int.Hautes.Temp.et Réfract., 10, 153–59) 1973).Google Scholar
  9. 9).
    M.Mitomo and J.H.Sharp, Yogyo Kyokai Shi, 84, 33–36 (1976).Google Scholar
  10. 10).
    T.Sata and K.Fujii, Yogyo Kyokai Shi, 90, 110–18 (1982).Google Scholar
  11. 11).
    T.Nakatogawa, J. Chem. Soc. Jpn. Ind. Chem. Sect., 57, 348–50 (1957).Google Scholar
  12. 12).
    G. Ervin, J.Am.Ceram.Soc., 41, 347–52 (1958).CrossRefGoogle Scholar
  13. 13).
    R.F. Adamsky, J.Phys.Chem., 63, 305–07 (1959).CrossRefGoogle Scholar
  14. 14).
    I.Burn and J.P.Roberts, Phys. Chem. Glasses., 11, 106–14 (1970).Google Scholar
  15. 15).
    S.White, Nature Phys.Sci., 230, 192 (1971).Google Scholar
  16. 16).
    V.R.Haul, G.Dümbgen, Z.Elektrochem., 66, 636–41 (1962).Google Scholar
  17. 17).
    E.W.Sucov, J.Am.Ceram.Soc., 46, 14–20 (1963).CrossRefGoogle Scholar
  18. 18).
    E.L.Williams, J.Am.Ceram.Soc., 48, 190–94 (1965).CrossRefGoogle Scholar
  19. 19).
    T.Yoshio, K.Oda, K.O-oka, and K.Oda, Yogyo Kyokai Shi, 94, 116–22 (1986).Google Scholar

Copyright information

© Elsevier Science Publishers LTD 1989

Authors and Affiliations

  • M. Yoshimura
    • 1
  • J. Kase
    • 1
  • S. Sōmiya
    • 1
  1. 1.Research Laboratory of Engineering MaterialsTokyo Institute of TechnologyMidori, YokohamaJapan

Personalised recommendations