Hydrothermal Synthesis and Sintering of LaCrO3

  • Masahiro Yoshimura
  • Shen-tai Song
  • Shigeyuki Sōmiya

Abstract

Pure LaCrO3 was synthesized from the mixture of La2O3 and Cr hydroxide under hydrothermal conditions of 100 MPa at temperatures as low as 700°C. Synthesized specimen of LaCrO3 consisted of homogeneous fine grains with the size of 0.7±0.2 µm. These grains were subsequently sintered by using hydrothermal reactions to remove H2O as the form of H2. A fine-grained and well-sintered body could be obtained under 100 MPa at 1000°C or above.

Keywords

Hydrothermal Synthesis Hydrothermal Condition Hydrothermal Reaction Lanthanum Oxide Chromic Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1).
    A. M. Anthony, G. Benezech, F. Cabannes, M. Faucher, M. Foex, V. Loc, and D. Yerouchalmi, Proc. IUPAC 3rd Int. Symp. High Temperature Technology (Butterworths, London, 1969) p. 213.Google Scholar
  2. 2).
    D. B. Meadowcroft, Energy Convers. 8 (1968) 185.CrossRefGoogle Scholar
  3. 3).
    G. H. Jonker, Physica 20 (1954) 1118.CrossRefGoogle Scholar
  4. 4).
    D. B. Meadowcroft, J. M. Wimmer, Am. Ceram. Soc. Bull. 58 (1979) 610.Google Scholar
  5. 5).
    R. Berjoan, G. Benezech, J.-P. Coutures, M. Foex, C. R. Acad. Sci. Paris 280C (1975) 601.Google Scholar
  6. 6).
    J. Faber, Jr., M. H. Muller, W. L. Procarione, A. T. Aldred, H. W. Knott, and H. U. Anderson, Proc. Conf. High Temperature Sciences Related to Open-Cycle Coal Fired MHD Systems, Argonne, Illinois, 1977; Gov. Rep. Announce. (U.S.) 77 (1977) 11B.Google Scholar
  7. 7).
    L. Groupp, H. U. Anderson, J. Am. Ceram. Soc. 59 (1976) 449.CrossRefGoogle Scholar
  8. 8).
    T. Sasamoto, T. Sata, Yogyo Kyokai Shi 74 (1971) 408 [in Japanese].Google Scholar
  9. 9).
    H. U. Anderson, R. Murphy, K. Humphrey, B. Rossing, A. Aldred, W. L. Procarione, R. J. Ackermann, and J. L. Bates, The Rare Earths in Modern Science and Technology, eds. G. J. McCarthy, J. J. Rhyne (Plenum Press, New York, 1978) p. 55.Google Scholar
  10. 10).
    H. C. Graham, H. H. Davis, J. Am. Ceram. Soc. 54 (1971) 89.CrossRefGoogle Scholar
  11. 11).
    S. Hirano, S. Sōmiya, J. Am. Ceram. Soc. 59 (1976) 534.Google Scholar
  12. 12).
    S. Sōmiya, S. Hirano, M. Yoshimura, S. Itoh, and H. Kanai, Proc. Int. Symp. Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics, eds. S. Sōmiya, S. Saito (Gakujutsu Bunken Fukyukai, Tokyo Institute of Technology, Tokyo, 1979) p. 267.Google Scholar
  13. 13).
    S. Sōmiya, M. Yoshimura, and H. Kanai, to be published in Zairyokagaku (J. Mater. Sci. Soc. Jpn).Google Scholar
  14. 14).
    M. Yoshimura, S. Sōmiya, Am. Ceram. Soc. Bull. 59 (1980) 246.Google Scholar
  15. 15).
    B.H.T. Chai, S. Mroczkowski, J. Cryst. Growth 44 (1978) 84.CrossRefGoogle Scholar
  16. 16).
    M. W. Shafer, R. Roy, Z. Anorg. Allg. Chem. 276 (1954) 275.CrossRefGoogle Scholar

Copyright information

© Elsevier Science Publishers Ltd 1989

Authors and Affiliations

  • Masahiro Yoshimura
    • 1
  • Shen-tai Song
    • 1
  • Shigeyuki Sōmiya
    • 1
  1. 1.Laboratory of Hydrothermal Syntheses, Research Laboratory of Engineering Materials and Department of Materials Science and EngineeringTokyo Institute of TechnologyMidori-ku, YokohamaJapan

Personalised recommendations